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1 Vectors and Units

1.1 Vector Definition

A vector is a magnitude (also called “size” or “length”) together with a direc-
tion.

1.2 Vectors: Direction

Direction is always given relative to a reference direction. The usual way to
specify a reference direction in physics is through perpendicular axes, as shown
in Figure 1. If I just say “60◦,” this is not a direction. Even though there’s an
angle, there is no reference direction specified. If I say, “60◦ above the x-axis,”
this is a specific direction.

x-axis

y-axis

60◦

Figure 1: 60◦ above the x-axis is a specific direction.
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60◦?
60◦?

60◦?

Figure 2: Directions are relative. Saying “60◦ is not enough to give a direction.

Remember: Direction is relative. To specify a direction, you always need
to start with some reference directions. Usually, the reference directions are the
x, y, and z axes.

1.2.1 One-dimensional Problems

In one-dimensional problems, vectors become much simpler. Remember that
a vector is both a magnitude and a direction. In a one-dimensional problem,
however, there are only two possible directions: forward and backward. You still
need an axis to define which way is forward and which way is backwards. Once
you have that, vectors can be described by a single number (along with some
units!). The direction of the vector (forward or backward) is given by the sign of
the number. Negative numbers indicate a vector that points backwards (relative
to your axis) and positive numbers indicate a vector that points forward.

1.2.2 Choosing Axes

We can choose the axes to point in any direction we want (as long as they are
perpendicular to each other). It’s usually a good idea to choose them so that
they point along directions that are important for the problem. Figure 3 shows
examples of good choices of axes for several different problems.
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x-axis

y-axis

Rock

(a) Since the rock is falling down, it makes sense to draw one of the axes to lie along the up-down direction.

x-axis

y-axis

Rock

(b) Since the rock is changing direction as it moves, it is hard to choose how to draw the axes. Since gravity
pulls downward, it could make sense to again draw one of the axes to lie along the up-down direction.

x-axis

y-axis

Ball

(c) For the ball rolling down the ramp, we could choose one of the axes to lie along the direction of the
ramp. Since gravity points downward, we could also choose to draw one of the axes along the up-down
direction. In this case, I chose the first option.

Figure 3: Answers for the “Choosing Axes” activity.
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1.3 Magnitude

Magnitude is relative. Numbers always need interpretations. Units are one
way to give interpretations to numbers. Here are some examples demonstrating
this point.

• “I walked 5.” This makes no sense. The correct way to communicate
distance would be something like “5 kilometers” or “5 centimeters”.

• “I drove my car at a speed of 120.” This also makes no sense. It should
be something like “120 miles per hour” or “120 kilometers per second.”

Remember: Magnitude is relative. To specify a vector, you always need to
give an interpretation to your numbers by giving them units.

1.3.1 Dimension versus Unit

Dimension is the physical quantity being measured. For example: distance,
time, and mass are all dimensions. Units are a specific way to measure the
quantity. For example: meters, miles, and inches are different units with same
dimension (length).

1.3.2 Examples of Fundamental Units

In this course, we will mostly use a set of units called SI units. The SI unit for
length is the meter. The SI unit for time is the second. The SI unit for mass is
the kilogram (not the gram).

1.3.3 Prefixes

Sometimes the standard units are too big or too small to be useful. For example,
if I tried to give the distance to New York City in meters, I would need to use
a very large number. It would be better to give the distance in kilometers.
1 kilometer is defined as 1000 meters. As another example, if I tried to give
the width of a hair in meters, I would need to use a very small number. It
would be better to give the distance in micrometers. 1 micrometer is defined as
1/1,000,000 of a meter.

These prefixes can be applied to any SI unit. For example, a kilosec-
ond (abbreviated “ks”) is 1000 seconds, and a microgram (abbreviated µg) is
1/1,000,000 of a gram. Figure 4 is a table of common SI unit prefixes.
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Prefix Abbreviation Relationship to Original Unit

nano- n ×10−9

micro- µ ×10−6

milli- m ×10−3

centi- c ×10−2

kilo- k ×103

mega- M ×106

giga- G ×109

Figure 4: Common SI unit prefixes.

1.3.4 Derived Units

In addition to fundamental SI units, we can also get more types to units by
combining other SI units. For example, the average speed of an object is defined
by the formula

average speed =
distance traveled

time traveled
.

We already know units for distance and time. Suppose I want to calculate the
average speed of a car that traveled 6m (”m” stands for meters) in 2s (s stands
for seconds). By the above formula

average speed =
6m

2s
= 3 ?.

The units for 3 are m/s (read “meters per second”). The “per” basically means
“divided by”.

1.3.5 Unit Conversion

Often, a magnitude will need to be converted from one unit to another. For
example, imagine we have a length of

5 miles

We want to know the magnitude of the physical distance in kilometers. 1 mile
is the same physical distance as 1.6 kilometers. We could write

1 mile = 1.6 kilometers

Therefore, we set up a fraction with 1.6 kilometers on top and 1 mile on the
bottom. Because it has the same distance on the top and bottom, this fraction
is “equal to 1”.

1.6 kilometers

1 mile
= ”1”.
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Because this fraction is “equal to 1,” we can multiply our original distance by
this fraction without changing the physical distance:

5 miles = 5 miles · 1.6 kilometers

1 mile

Units in equations cancel just like variables.

5 miles · 1.6 kilometers

1 mile
= 5 · 1.6 kilometers

1
= 5 · 1.6 kilometers = 8 kilometers.

This method can be used even for more complicated unit conversions. Each
unit can be converted by multiplying by a fraction “equal to 1.”

1.3.6 Dimensional Analysis

Keeping track of units when doing a calculation can help prevent algebra errors.
For example, suppose I was trying to calculate a distance, and I ended up with
an expression like

1

2
· 12kg
6kg

(5m/s)2 · 3s

If we cancel out the units on the top and bottom, we get

=
1

2
· 12kg
6kg

· 25m2/s2 · 3s = 1

2
· 12
6

· 25m2/(s · s) · 3s

=
1

2
· 2 · 25m2/s · 3 = 75m2/s

I know there must have been an error in my formula, because the units of my
final answer are m2/s, which is not a unit of distance.

Another important thing to remember is that you should never add or sub-
tract magnitudes with different units. For example, “5 miles + 2 seconds”
makes no sense. This may seem obvious now, but it’s easy to forget when
your in the middle of a calculation with more complicated units.

Remember: Always include units in your calculations, and check whether
they make sense.

1.4 Working with Vectors

1.4.1 Equivalent Vectors

Vectors have magnitude and direction. These are the only things that matter
when specifying a vector. Note that it doesn’t matter where a vector is drawn.
Only its length and direction matter. For example, the vectors in Figure 5 are
all equivalent. Even though they are drawn at different locations, they have the
same length and direction.
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Remember: The location of a vector doesn’t matter. Only its magnitude
and direction matter.

x

y

1 m

1 m

Figure 5: These vectors are all equivalent. Even though they are drawn at
different locations, they have the same length and direction.

.

1.4.2 Cartesian Coordinates

Given a set of axes, another way to specify a vector is to give a set of Cartesian
coordinates. Below are three methods for getting the coordinates of a vector.
If you find this process confusing, I recommend sticking with Method 1.

Method 1 This method is illustrated in Figure 6.

• Draw (dashed) lines through tail of vector, parallel to the axes.

• Find the angle of the vector above the x-axis.

• Then vx = |v⃗| cos θ and vy = |v⃗| sin θ.

• Make sure to check the signs of your coordinates. The coordinate should
be positive if it lies on the positive side of the axis, and negative otherwise.

x

y

v⃗

x

y

θ

Figure 6: The steps to find the Cartesian coordinates of a vector (method 1).
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Method 2 This method is illustrated in Figure 7.

• Draw a set of axes passing through the “tail” end of the vector.

• Draw lines from the end of the vector to each of the axes. Draw them so
that they intersect each axis at a 90◦ angle.

• Use trigonometry to find the length of the portion of each axis between
the tail of the vector and the point of intersection.

• These lengths are the Cartesian coordinates of the vector. The length
along the x-axis is the x-coordinate, the length along the y-axis is the
y-coordinate, etc.

• The coordinate should be positive if it lies on the positive side of the axis,
and negative otherwise.

x

y

v⃗

x

y

vx

vy

Figure 7: The steps to find the Cartesian coordinates of a vector. The dashed
lines are drawn through the tail of the vector and are parallel to the axes. The
dotted lines are drawn from the end of the vector and meet the dashed axes
at 90◦. Each of the dotted lines form a right triangle with one of the axes
and the vector as the hypotenuse. The lengths of the blue and red sections
give you the x and y coordinates respectively. If you can figure out one of the
angles, you can use trigonometry to find the lengths. To figure out whether
each coordinate is positive or negative, just look at whether the vector is going
in the same direction (+ sign) or opposite direction (- sign) to the axis. In this
case, both coordinates are positive because the vector is closer to pointing along
the positive x and y directions.

Method 3 This method is illustrated in Figure 8.

• Draw a set of lines parallel to the axes. Draw them so that they form a
right triangle with the vector.

• Find the length of the vector (usually, this is already known). This gives
you the length of the hypotenuse of the right triangle.
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• Find one of the angles. You might need to use some trigonometry.

• Use sin and cos functions to find the lengths of the two legs of the triangle.
These give you the absolute value of the x and y coordinates of the vector.

• To figure out whether each coordinate should be positive or negative, just
look at whether the vector is going in the same direction (+ sign) or
opposite direction (- sign) to the axis.

x

y

x

y

Figure 8: The steps to find the Cartesian coordinates of a vector. The dashed
lines are drawn parallel to the axes and form a right triangle with the vector.
If you know the length of the vector and can find one of the angles, then you
can use trigonometry to find the lengths of the two other sides of the triangle.
These give you the x and y coordinates of the vector, although they don’t tell
you whether the coordinates are positive or negative. To figure this out, just
look at whether the vector is going in the same direction (+ sign) or opposite
direction (- sign) to the axis. In this case, both coordinates are positive because
the vector is closer to pointing along the positive x and y directions.

Notating Cartesian Coordinates Vectors are usually written in bold (v) or
with an arrow on top (v⃗). The magnitude (length) of a vector is written as
|v⃗| or just v (without an arrow on top). The components of a vectors can be
written in different ways. Here is an example of the coordinates of the same
vector written in different notations:

• vx = 2, vy = −3, vz = 1

• v⃗ =


2

−3

1


• v⃗ = 2x̂− 3ŷ + ẑ
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• v⃗ = 2̂i− 3ĵ + k̂

Working Backwards from Cartesian Coordinates The magnitude (length)
of a vector is given by the Pythagorean Theorem:

|v⃗| =
√
v2x + v2y.

1.4.3 Adding and Subtracting Vectors

There are two ways to add and subtract vectors. One is visual, and the other
is to add or subtract the Cartesian coordinates.

Visual Method The visual method for adding and subtracting vectors is illus-
trated in Figure 9.

To visually add vectors, put the tail of the second vector at the end of the
first vector. Then the sum is the vector that starts at the tail of the first vector
and ends at the end of the second vector.

To visually subtract vectors, we use a trick. Suppose we were asked to find
v⃗1− v⃗2. This is the same as v⃗1+(−v⃗2). Now −v⃗2 looks like the v⃗2 vector, except
it is flipped to point in the opposite direction. All we need to do to visually
subtract is to first find −v⃗2 by flipping v⃗2, and then to add v⃗1 and −v⃗2 using
the method above.

v⃗1

v⃗2

v⃗1 + v⃗2
v⃗1

−v⃗2

v⃗1 + (−v⃗2)

Figure 9: The visual method for adding and subtracting vectors.

Coordinates Method The other way (which is the method we will be using
almost always in this course) to add or subtract vectors is to add or subtract
the coordinates. To do this, find the x, y, and z coordinates of each vector.
Then add the x coordinates together to get the x coordinate of the sum. Add
the y coordinates together to get the y coordinate of the sum, and do the same
for the z component if needed.

Remember: Never add or subtract the magnitudes of vectors directly. 5 miles
north + 2 miles south is not 7 miles (in any direction). You need to find the
individual coordinates and add/subtract those.
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1.4.4 Trigonometry Review

Here are some useful facts to remember from trigonometry. Make sure you know
all of this. You will need this information!

• For a right triangle, sin θ = length of opposite side
length of hypotenuse , cos θ = length of adjacent side

length of hypotenuse ,

and tan θ = sin θ
cos θ = length of opposite side

length of adjacent side .

• Pythagorean Theorem: If c is the length hypotenuse (longest side) of
a right triangle, and a and b are the lengths of the other two sides, then
c2 = a2 + b2.

• Given two parallel lines, and a third line that intersects them, the alternate
interior angles are equal (see Figure 10).

• If a 180◦ angle is divided up into smaller angles, the sum of all those angles
must be 180◦. Same for 90◦ (see Figure 11).

• The angles of a triangle add to 180◦ (see Figure 12).

• The two acute angles of a right triangle add to 90◦ (see Figure 13).

θ

θ

Figure 10: Given two parallel lines, and a third line that intersects them, the
alternate interior angles are equal.

θ1

θ2

θ3

θ1 + θ2 + θ3 = 180◦

Figure 11: If a 180◦ angle is divided up into smaller angles, the sum of all those
angles must be 180◦. Same for 90◦.
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θ1θ2

θ3

θ1 + θ2 + θ3 = 180◦

Figure 12: The angles of a triangle add to 180◦.

θ1

θ2

θ1 + θ2 = 90◦

Figure 13: The two acute angles of a right triangle add to 90◦.

2 Vectors and Kinematics

In this course, we will frequently need to discuss the position, velocity, and
acceleration of physical objects.

2.1 Calculus Review

In calculus, you should have learned about derivatives and integrals. The deriva-
tive of a function f(t) with respect to the variable t is the rate at which f changes
when t changes. If f(t) is graphed as a function of t, the derivative of f with
respect to t is the slope of the graph. If f(t) were a line, its slope would be

given by the formula f(t+∆t)−f(t)
∆t . If f(t) is more complicated, however, this

formula only gives the average slope:

average slope of f with respect to t =
f(t+∆t)− f(t)

∆t
.

The derivative df
dt is defined as the instantaneous slope. To get the instantaneous

slope, we need to take the limit as ∆t → 0:

df

dt
= lim

∆t→0

f(t+∆t)− f(t)

∆t
.
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Figure 14: The derivative of f(t) with respect to t is the slope of the graph of f
versus t. The blue line show the instantaneous slope at the point t = 2, and the
red line shows the average slope between t = 2 and t = 3. The average slope is
different from the instantaneous slope, but would become closer and closer as
the red points are moved closer together.

The integral of a function is, intuitively, the “area under the curve” (the
area under the graph of a function). Definite integrals (which are generally
what we will be using in this course), have a specific starting and ending point.

For example,
∫ tf
ti

f(t)dt is the integral of f with respect to t, with ti and the

starting point (i stands for “initial”) and tf is the ending point (f stands for
“final”).
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Figure 15: The integral
∫ 3

1
f(t)dt is the blue-shaded area under the graph of f

versus t between times 1 and 3. Note that the phrase “area under the curve” is
a little ambiguous, since it doesn’t specify the bottom boundary. In the case of
a definite integral, the correct bottom boundary is the bottom axis. Anything
below that axis would be counted as negative area.

One important result from your calculus classes is the Fundamental Theorem
of Calculus, which says

f(tf )− f(ti) =

∫ tf

ti

df

dt
dt.

In other words, if you integrate a derivative, you get back the original function
(or at least the difference f(tf ) − f(ti) between the original function at two
points).

Because we will often have expressions like f(tf )− f(ti), we define the delta
notation ∆f to mean

∆f ≡ f(tf )− f(ti).

Note that this is “final minus initial” (the order is important). We could also
define ∆t = tf−ti. Using this delta notation, the average rate of change formula
above becomes:

average slope of f with respect to t =
∆f

∆t
.

2.2 Position

We can use vectors to represent position. However, a vector by itself is not
enough. Position is relative! If I send a text saying, ”the library is 1 mile

17



north,” that is not enough information. I also need to communicate the starting
location. The library is not 1 mile north from New York City, for example. To
properly specify location, I would need to say, “1 mile north from my house,”
for example. In this case, “1 mile north” is a vector, and “my house” is the
reference location.

In physics, we often call the reference location “the origin.” When drawing
axes, we often draw them so that they intersect at the origin. All locations are
then given by vectors. The vector tells you how far (the magnitude) and in
what direction you need to go to get from the origin to the desired location.

2.3 Brief Note on Time

Time is also relative. Whenever we give times in physics, we need to specify
what our “zero” time is. For example, I might say that time t = 0 corresponds
to the moment when a ball is dropped. Then I could describe the motion of the
ball at different points in time after it is dropped. For example, t = 2s would
be two seconds after the ball is dropped.

2.4 Velocity

Velocity is defined as the rate of change of position with respect to time. Velocity
is a vector. The magnitude of the velocity is the speed of the object, and the
direction of the velocity is the direction in which the object is moving.

In calculus, you learned how to calculate rates of change. If I give you a
position vector that is a function of time, like

x⃗(t) =

 6

15 + 3t− 10t2

 ,

the velocity vector (the rate of change of position) can be found by taking the
derivative of each coordinate of the position vector:

v⃗(t) = x⃗′(t) ≡ dx⃗

dt
=

 d
dt6

d
dt (15 + 3t− 10t2)

 =

 0

3− 20t

 .

We can also use calculus to work backwards and go from velocity to (the
change in) position:

∆x⃗ ≡ x⃗(tf )− x⃗(ti) =

∫ tf

ti

dx⃗

dt
dt =

∫ tf

ti

v⃗(t)dt.

2.5 Acceleration

Acceleration, which is a vector just like velocity, is defined as the rate of change
of velocity with respect to time. When an object accelerates, its velocity
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changes. This can mean either that the magnitude of the velocity changes
(speeding up or slowing down), or that the direction of the velocity changes.
For example, if a car goes at a constant speed around a curve, it is accelerating:
the direction of its velocity is changing.

We can once again use calculus to calculate acceleration based on velocity.
The (time) derivative of velocity is acceleration:

a⃗(t) =
dv⃗

dt
.

We can also go in the opposite direction using integration, just like before:

∆v⃗ = v⃗(tf )− v⃗(ti) =

∫ tf

ti

dv⃗

dt
dt =

∫ tf

ti

a⃗(t)dt.

Variable Derivative Integral

x⃗ v⃗ = dx⃗
dt -

v⃗ a⃗ = dv⃗
dt ∆x =

∫ tf
ti

v⃗dt

a⃗ - ∆v =
∫ tf
ti

a⃗dt

Figure 16: Summary of kinematic variables and their derivatives/integrals. x⃗ is
position, v⃗ is velocity, and a⃗ is acceleration. ∆x⃗ means “the change in x⃗,” and
is equal to x⃗(tf )− x⃗(ti).

3 Constant Acceleration

3.1 The Kinematic Equations

Now we’ll use the information from Section ?? to find equations for x⃗ and
v⃗ for the specific case of an object that has constant acceleration. All the
formulas in this section will only apply to objects that have constant
acceleration.

Imagine we have an object that, for some reason, is accelerating at a constant
rate. The acceleration would be some vector a⃗ that does not depend on time
(it is constant). If we want to find the velocity, we can use the formula from
Figure ??:

∆v⃗(t) =

∫ tf

ti

a⃗dt

Since a⃗ is a constant, we can factor it out of the integral:

∆v⃗(t) =

∫ tf

ti

a⃗dt = a⃗

∫ tf

ti

dt = (tf − ti)⃗a
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=⇒ v⃗(tf )− v⃗(ti) = (tf − ti)⃗a

=⇒ v⃗(tf ) = v⃗(ti) + (tf − ti)⃗a.

Sometime, you may see v⃗(ti) written as v⃗0. In many problems, we also choose
ti = 0 and just write tf as t. In that case, this formula becomes

v⃗(t) = v⃗0 + t⃗a.

Now that we have found v⃗(t), we can also find ∆x⃗ using the formula from
Figure ??:

∆x⃗(t) =

∫ tf

ti

v⃗(t)dt =

∫ tf

ti

[v⃗0 + t⃗a] dt = (tf − ti)v⃗0 +
1

2
(t2f − t2i )⃗a

=⇒ x⃗(tf )− x⃗(ti) = (tf − ti)v⃗0 +
1

2
(t2f − t2i )⃗a

=⇒ x⃗(tf ) = x⃗(ti) + (tf − ti)v⃗0 +
1

2
(t2f − t2i )⃗a.

Again, we will often write x⃗(ti) as x⃗0, choose ti = 0, and relabel tf as just t.
Then the formula becomes

x⃗(t) = x⃗0 + tv⃗0 +
1

2
t2a⃗.

3.2 Graphs of Constant-Acceleration Problems

In Section 3.1, we used calculus to find the formulas that describe the velocity
and position of an object in constant acceleration. We can also think about what
the graphs of each kinematic variable (acceleration, velocity, and position) look
like for an object in constant acceleration. These graphs are portrayed in figures
17, 18, and 19.
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Figure 17: For constant acceleration, the graph of acceleration versus time will
just be a flat line: the acceleration stays at the same value for all time.
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Figure 18: For constant acceleration, the graph of velocity versus time will just
be a straight line. The slope of the line is the acceleration, and the slope must
be constant because the acceleration is constant. We can see the initial value of
the velocity by looking at the value of the graph at time t = 0.
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Figure 19: For constant acceleration, the graph of position versus time will be a
parabolic curve. The graph can curve either upwards or downwards, depending
on the acceleration and initial velocity.

3.3 Gravity

Gravity causes objects to fall with a constant acceleration. The acceleration
due to gravity is given by

g ≈ 9.81 m/s
2
.

Note that this gives the magnitude of the gravitational acceleration. The direc-
tion is always pointing straight down toward the center of the earth (unless you
are in outer space). In a one-dimensional problem, you should make sure the
sign of g matches your choice of axis. If you have defined the positive direction
as being upward, then g should be negative, because gravity pulls downward.

One useful piece of information when dealing with problems involving gravity
is that, if an object is thrown straight up, its velocity when it reaches the highest
point in its path is zero. This is because the object was initially traveling
upward, but is about to turn around and start traveling downward. Because
the object cannot instantly change from an upward velocity to a downward
velocity, it must, for a brief moment, have zero velocity.

3.4 Working with Kinematic Equations

The kinematic equation we have found so far (which only apply to problems
with constant acceleration) are

v⃗(t) = v⃗0 + t⃗a.

x⃗(t) = x⃗0 + tv⃗0 +
1

2
t2a⃗.
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In one-dimension, we can drop the vector symbols and just write numbers for
x, v, and a (although always remember the the sign of the number determines
its direction). Then the equations are just

v(t) = v0 + ta.

x(t) = x0 + tv0 +
1

2
t2a.

These equations can be recombined using algebra to get an additional useful
equation. First, we can solve the v equation for t:

v(t) = v0 + ta =⇒ t =
v − v0

a
.

Then we can substitute this equation for t into the equation for x:

x(t) = x0 + tv0 +
1

2
t2a = x0 +

(
v − v0

a

)
v0 +

1

2

(
v − v0

a

)2

a

=⇒ v2 = v20 + 2a(x(t)− x0) ≡ v20 + 2a∆x.

This equation might be useful for certain problems (again, it only applies to
problems with constant acceleration). The kinematic equations we have derived
in this section are summarized in Figure 20.

a(t) = constant

v(t) = v0 + ta

x(t) = x0 + tv0 +
1
2 t

2a

v2 = v20 + 2a∆x

Figure 20: The kinematic equations for problems with constant acceleration.

4 Projectile Motion

In this class, we will discuss how to apply the kinematic equations for constant
acceleration (Figure ??) to calculate the path of a projectile. Once a projectile
is dropped or thrown through the air, gravity will make the object accelerate
downward at a constant rate of g ≈ 9.81 m/s2. Because the acceleration is
constant, we can apply the kinematic equation from Figure ??. However, we
need to be careful. Projectile motion usually happens in two dimensions (unless
the object is falling straight up or down). This means that we need to account
for both the magnitude and direction.

The kinematic equation from Figure ?? apply to each coordinate
separately. This is an important point! You should never try to use the
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kinematic equations with the magnitude of a vector (unless you are dealing
with a one-dimensional problem). Always break the vector up into x and y
coordinates first. See Figure 21.

ax(t) = constant

vx(t) = v0,x + tax

x(t) = x0 + tv0,x + 1
2 t

2ax

v2x = v20,x + 2ax∆x

ay(t) = constant

vy(t) = v0,y + tay

y(t) = y0 + tv0,y +
1
2 t

2ay

v2y = v20,y + 2ay∆y

Figure 21: The kinematic equations in component form.

Let’s start with acceleration. Gravity gives a constant acceleration of g ≈
9.81 m/s2 downward.

Activity: Choose a coordinate system, and find the x and y coordinates of
the gravitational acceleration.

Solution: See Figure 22.

x

y

a⃗

Figure 22: The gravitational acceleration points straight down along the y-axis,
so ax = 0 and ay ≈ −9.81m/s2.

Once we know ax = 0 and ay ≈ −9.81 m/s2, we can move on to velocity. In
the kinematic equations for velocity, we need to know v0. Sometimes, the ini-
tial velocity is given in the problem. For example, a problem might say that
a projectile is launched with some initial speed |v⃗0| at an angle of θ above the
horizontal. This gives us the initial velocity vector, since it gives both magni-
tude and direction.

Activity: Choose a coordinate system, and find the x and y coordinates of
the initial velocity vector.
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Solution: See Figure 23.

x

y

v⃗0

θ

(a) The initial velocity has magnitude |v⃗0| and a direction that is at angle θ above the
horizontal.

x

y

θ

v0,x

v0,y

(b) We draw lines parallel to the axes to make a right triangle. Then we can use
trigonometry to find the coordinates: sin θ = v0,y/|v⃗0| and cos θ = v0,x/|v⃗0|. Solving
these equations gives v0,x = |v⃗0| cos θ and v0,y = |v⃗0| sin θ

Figure 23: Solution to initial velocity activity.

Once we’ve found v0,x = |v⃗0| cos θ and v0,y = |v⃗0| sin θ, we can use the kinematic
equations for v⃗ to get

vx(t) = v0,x + tax = |v⃗0| cos θ + t · 0 = |v⃗0| cos θ

vy(t) = v0,y + tay = |v⃗0| sin θ + t · (−9.81) m/s
2
.

From the first equation, notice that vx is constant (it doesn’t change with time).
In fact, it has the same value as v0,x. The reason vx is constant is that gravity
only causes acceleration in the downward direction (which lies only along our
y-axis). Because all the acceleration is in the y-direction, the x-coordinate of
the velocity does not change. On the other hand, vy is affected by gravity and
decreases with time.
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So far, we have found the equations for a⃗ and v⃗. We can also find the
equation for x⃗. Following a common convention for position, we will use the
variable x (without an arrow on top) to represent the x-component of x⃗, and
we will use y to represent the y-component. Based on the kinematic equations
in Figure ??,

x = x0 + tv0,x +
1

2
t2ax = x0 + t|v⃗0| cos θ

y = y0 + tv0,y +
1

2
t2ay = y0 + t|v⃗0| sin θ +

(−9.81 m/s
2
)

2
t2.

ax = 0

v0,x = |v⃗0| cos θ

vx(t) = |v⃗0| cos θ

x = x0 + t|v⃗0| cos θ

ay = −g

v0,g = |v⃗0| sin θ

vy(t) = |v⃗0| sin θ − tg

y = y0 + t|v⃗0| sin θ − g
2 t

2.

Figure 24: The equations of motion for a projectile. θ is the angle of the initial
velocity above the horizontal direction.

4.1 Projectile Range

The range of a projectile is the distance the projectile travels before it lands. We
can use the equations of motion we found to predict the range of a projectile.
We will assume the projectile starts at ground-level. If we define y = 0 to be
ground-level as well, then this means y0 = 0. The projectile lands once y(t) = 0.
The y equation is

y(t) = y0 + t|v⃗0| sin θ −
g

2
t2.

Putting in y0 = 0 and y = 0 gives

0 = t|v⃗0| sin θ −
g

2
t2

=⇒ 0 = |v⃗0| sin θ −
g

2
t

=⇒ t =
2|v⃗0| sin θ

g

In this equation, t is the landing time. By solving this equation, we were able to
find the time at which the projectile will land. To find the range, we just need
to figure out how far the projectile traveled in the x direction. The x equation
is

x(t) = x0 + t|v⃗0| cos θ.
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If we choose x = 0 to be the location where the projectile started, then x0 = 0.

If we also use t = 2|v⃗0| sin θ
g , we get

x =

(
2|v⃗0| sin θ

g

)
|v⃗0| cos θ =

2|v⃗0|2 sin θ cos θ
g

.

Using the trigonometric identity sin 2θ = 2 sin θ cos θ, we can simplify this to

R =
|v⃗0|2 sin 2θ

g
.

I have replaced x with R to emphasize that this is the range of the projectile.
This equation is sometimes called the range equation. It is only valid if is the
starting height is at ground level (in other words, if y0 = 0).

4.2 Throwing versus Dropping

Suppose I drop an object straight down. Its velocity and height are given by

vy(t) = v0,y − (9.81 m/s
2
)t.

y(t) = y0 + tv0,y −
(9.81 m/s

2
)

2
t2.

If I drop it, then v0,y = 0 (the object initially is not moving). If I throw it
straight down, it might have some non-zero initial velocity v0,y.

Now consider a different situation where I throw an object through the air.
Now it will move in both the x and y directions. However, the equations for the
y-velocity and height are still

vy(t) = v0,y − (9.81 m/s
2
)t.

y(t) = y0 + tv0,y −
(9.81 m/s

2
)

2
t2.

The fact that the object is also moving in the x direction does not affect its
motion in the y direction.

One thing to remember in particular is, just like we discussed in Lecture 2.1,
when an object moving under gravity reaches its maximum height, its upward
velocity is zero. For a projectile, when the projectile reaches the highest point
of its flight, its vertical velocity is zero (although its horizontal velocity is not
necessarily zero).

5 Relative Motion and Circular Motion

5.1 Relative Motion

Worksheet: Suppose I am traveling in a train moving at 30 m/s. Suppose I
walk toward the front of the train at a speed of 1 m/s (relative to the floor of
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the train). How fast am I moving relative to the ground?

Solution: Because the train is already moving, and because I am moving in
the same direction as the train is moving, my total speed relative to the ground
is 30 m/s + 1 m/s = 31 m/s.

Worksheet: Suppose instead I walk toward the back of the train. How fast
am I moving relative to the ground?

Solution: Because I am now moving in the opposite direction to the train,
my total speed relative to the ground is 30 m/s - 1 m/s = 29 m/s.

Worksheet: Suppose instead I walk across the width of the train, from one
side to the other. How fast am I moving relative to the ground?

Solution: The previous discussion questions were all one-dimensional. This
problem is two-dimensional, because the train and I are moving in different di-
rections. See Figure 25 for a drawing of the situation and a choice of axes. With
these axes, vme,x = 0 and vme,y = −1 m/s, and vme,x = 30 m/s and vme,y = 0.
Therefore, if I sum my velocity relative to the train with the train’s velocity, I
would get vx = 30 m/s and vy = −1 m/s. Using the Pythagorean theorem to

get the total magnitude, |v| =
√
v2x + v2y =

√
901 ≈ 30.02 m/s.

x

y

v⃗me

v⃗train

Figure 25: Diagram of the train problem.

5.1.1 Notation for Relative Motion

In the previous examples, the train was one reference frame, and the ground was
another reference frame. We could measure velocities relative to the train, or
relative to the ground. We will sometimes use subscripts to represent different
reference frames. For example, the subscript G could stand for “ground,” the
subscript T could stand for “train,” and the subscript M could stand for “me”.
Then we could write the velocity of the train relative to the ground as v⃗TG.
The velocity of me relative to the train would be v⃗MT , and the velocity of me
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relative to the ground would be v⃗MG. In this notation, the equation to find my
velocity relative to the ground would be

v⃗MG = v⃗MT + v⃗TG.

More generally, if we have an object A and reference frames labeled by B and
C, then this equation would be

v⃗AC = v⃗AB + v⃗BC .

5.1.2 Airplane Example

Problem: A plane is moving east at 200 m/s relative to the air. It is moving
250 m/s relative to the ground. The air is moving south. What is the speed of
the air relative to the ground?

Solution: See Figure 26. We know |v⃗PG| (the speed of the plane relative
to the ground) is 250 m/s, and that |v⃗PA| (the speed of the plane relative to
the air) is 200 m/s east. Since v⃗PA is pointed east, using the coordinate system
from Figure 26, we can conclude that v⃗PA,x = 200 m/s and v⃗PA,y = 0. We
don’t know v⃗AG, but we do know that it is pointed south, so v⃗AG,x = 0 and
v⃗AG,y is some negative number, which we want to find. We can use the relative
velocity equation

v⃗PG = v⃗PA + v⃗AG.

Remember that we need to add vectors using coordinates (not magnitudes).
Looking at the coordinates above, we can see that

v⃗PG,x = v⃗PA,x + v⃗AG,x = 200 m/s

and
v⃗PG,y = v⃗PA,y + v⃗AG,y = v⃗AG,y.

Now we can use our knowledge that |v⃗PG| = 250 m/s. By the Pythagorean
theorem,

(250 m/s)2 = (200 m/s)2 + v⃗2AG,y

=⇒ v⃗2AG,y = (250 m/s)2 − (200 m/s)2 = 102500 m2/s2

=⇒ v⃗AG,y = ±
√
102500 m/s ≈ 320 m/s.

We were asked to find the speed of the air relative to the ground:

|v⃗AG| =
√

v⃗2AG,x + v⃗2AG,y =
√
0 + 102500 m2/s2 ≈ 320 m/s.
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x (east)

y (north)

v⃗PA

v⃗AG

Figure 26: A diagram for the plane activity. v⃗PG is the velocity of the plane
relative to the ground, and v⃗AG is the velocity of the air relative to the ground

5.2 Circular Motion

5.2.1 Velocity and Acceleration

Question: See Figure 27.

Solution: When the string breaks, the rock will travel in a straight line tangent
to the circle (path B in Figure 27).

Remember: When an object is moving in circular motion, its velocity will
always be tangent to the circle.

A?

B?

C?

Figure 27: Suppose a rock at the end of a string is being swung in a circle.
Which way will the rock travel if the string suddenly breaks?

An object in circular motion is always accelerating. This is because the
direction of its velocity vector is always changing. The acceleration of an object
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in circular motion points toward the inside of the circle, as illustrated in Figure
28.

v⃗1

v⃗2

(a) The velocity of an object in circu-
lar motion at two points in time.

v⃗1

v⃗2
∆v⃗ ≈ a⃗∆t

(b) The difference between
the two velocities ∆v⃗ is ap-
proximately proportional to
the acceleration.

Figure 28: When an object moves in a circle, the acceleration vector is pointed
toward the inside of the circle. In uniform circular motion, the acceleration
points exactly toward the center of the circle.

5.2.2 Uniform Circular Motion

When an object moves in a circle at a constant speed, we call this motion
uniform circular motion. Note that even though the speed is constant in uniform
circular motion, the velocity is not constant because the object’s direction is
constantly changing.

The acceleration of an object in uniform circular motion is always pointed
exactly toward the center of the circle. The reason this is true is because if
the acceleration were not perpendicular to the velocity, the magnitude of the
velocity vector (the speed) would increase. Uniform circular motion means the
object is traveling at a constant speed, and so the acceleration is perpendicular
to the velocity. Because the velocity is always tangent to the circle, the direction
perpendicular to the velocity is toward the center of the circle.

The magnitude of the acceleration (of an object in uniform circular motion)
is given by the equation

|⃗ac| =
|v⃗|2

r
,

where ac is the magnitude of the acceleration, |v⃗| is the magnitude of the veloc-
ity, and r is the radius of the circle. This equation is derived in Figure 29.

Remember: The acceleration of an object in uniform circular motion is al-

ways pointed directly toward the center of the circle and has magnitude |v⃗|2
r .
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v⃗1

v⃗2

θ

r⃗1 r⃗2
θ

(a) The velocity of an object in circu-
lar motion at two points in time.

θ

v⃗1

v⃗2

∆v⃗

(b) The velocity triangle.

θr⃗1 r⃗2

∆r⃗

(c) The radius
triangle.

Figure 29: The “velocity triangle” and “radius triangle” are similar triangles.
The angle θ is the same for both because v⃗1 is perpendicular to r⃗1 and v⃗2
is perpendicular to r⃗2. The single angle θ is enough to ensure the triangles
are similar because the triangles are isosceles (remember v⃗1 and v⃗2 have the
same length because speed is constant in uniform circular motion). Because

the triangles are similar, |∆v⃗|
|v⃗1| = |∆r⃗|

|r⃗1| . We can divide both sides by ∆t and

rearrange to get |∆v⃗|
∆t = |v⃗1|

|r⃗1|
|∆r⃗|
∆t . Now we can take the limit as ∆t → 0 to get

d|v⃗|
dt = |v⃗1|

|r⃗1|
d|r⃗|
dt , or using the definitions of a⃗ and v⃗1, |⃗a| = |v⃗1|2

|r⃗1| .

6 Newton’s Laws of Motion

Newton’s three laws of motion are

1. A moving object keeps moving at a constant velocity unless acted upon
by a force.

2. The acceleration of an object is proportional to the sum of all forces acting
on it:

ma⃗ =
∑
i

F⃗i
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(the notation
∑

i F⃗i ≡ F⃗1+F⃗2+· · · just means “sum all the force vectors”).

3. If object A causes a force on object B, then object B causes a force on
object A with equal magnitude but opposite direction (this is sometimes
stated as “for every action, there is an equal but opposite reaction”).

Newton’s second law implies the first law. If there are no forces, Newton’s
second law says that the acceleration will be zero, and therefore the velocity
will not change.

6.0.1 Newton’s First Law

If I were on a train which was moving in a straight line at a constant speed on
a perfectly smooth track (no bumps or vibrations), then the only way I could
know that I am moving is by looking out the window. There is no physics
experiment that I could do within the train to figure out that I am moving.

In the context of mechanics, Newton’s first law is the reason that I cannot
figure out that I am moving. For example, as we discussed in Lecture 2.2, if
I drop a ball, the ball will have a horizontal velocity equal to the horizontal
velocity of the train. However, since I am also moving horizontally at the exact
same speed, I will not be able to see that the ball is moving horizontally. To me,
it will look like the ball is falling straight down, just as if I were not moving.

6.0.2 Newton’s Second Law

Newton’s second will be very important in this course. The three variables in-
volved are mass m, acceleration a⃗, and the forces F⃗i. We have already discussed
acceleration in previous lectures. Now we will discuss mass and forces.

Mass
We can solve the equation in Newton’s second law for mass:

m =
|
∑

i F⃗i|
|⃗a|

.

Based on this, we can see that mass is “force per acceleration” (the amount of
force required to get a given amount of acceleration).

Mass measures how hard it is to move an object. If an object has a lot of
mass, then a lot of force is required to accelerate the object. The standard units
of mass in the SI system are kilograms (note that the standard unit is kilograms,
not grams). Note that mass is not the same as weight. Weight measures how
heavy an object is (or in other words, how much gravity pulls on the object). On
the other hand, mass measures how hard it is to move an object. The weight
of an object can be different on different planets (because each planet has a
different gravitational strength), but the mass of an object stays the same the
same even when no gravity is acting on it at all. There is a connection between
weight and mass which we will discuss below in the section on gravity.
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Discussion: If we plot the magnitude of the total force versus the magni-
tude of acceleration, what will the graph look like?

Solution: By Newton’s second law,

|
∑
i

F⃗i| = m|⃗a|.

If we replace the magnitude of the total force |
∑

i F⃗i| with y, and the magnitude
of the acceleration |⃗a| with x, then this equation would be

y = mx.

This is just the equation for a line with a slope equal to the mass m.

6.0.3 Force

Force is a vector. A force acts on an object by pulling it in some direction.
Whenever we use Newton’s second law, we always need to sum over all the
forces acting on an object. Once we know the total force

∑
i F⃗i, we can put it

into the equation for Newton’s second law.
Because force is a vector, we need to break all the forces up into x and y

coordinates before adding them together. The Newton’s second law equation
applies to the x and y coordinates separately:

max =
∑
i

Fi,x

may =
∑
i

Fi,y.

Note that the mass m is not a vector and does not need to be broken up into x
and y components.

The units of force can be determined based on Newton’s second law. The
units of ma⃗ are kilograms times meters per second squared (written kg ·m/s2).
Since ma⃗ is equal to a sum of forces, the units for force must be the same. For
convenience, the SI system defines a derived unit called a “Newton” (abbrevi-
ated “N”) that means kg ·m/s2. For example, 5 N means 5 kg ·m/s2.

Activity: A force pulls an object of mass 5 kilograms downward with a strength
of 4 N, and another force pulls the same object toward the right with a force of
3 N. What is the magnitude of the total acceleration of the object?

Solution: Let’s call the forces F⃗1 and F⃗2. If we use a standard set of axes,
then F1,x = 0, F1,y = −4 N, F2,x = 3 N, and F2,y = 0. The total force in
the x direction is F1,x + Fx,2 = 0 + 3 N = 3 N. Therefore, the x-coordinate of
acceleration is

ax =

∑
i Fi,x

m
=

3 N

5 kg
=

3 kg ·m/s2

5 kg
=

3

5
m/s2.
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Note that we had to use the definition of the unit N in order to simply the
expression to the correct units for acceleration. The total force in the y direction
is F1,y + Fy,2 = −4 N + 0 = −4 N, and so

ay =

∑
i Fi,y

m
= −4

5
m/s2.

The magnitude of the acceleration is given by the Pythagorean theorem,

|⃗a| =
√
a2x + a2y =

√
9

25
+

16

25
m/s2 =

√
25

25
m/s2 = 1 m/s2.

6.0.4 Newton’s Third Law

Newton’s third law states that whenever an object pushes on another object,
the other object pushes back. For example, if I push on the wall with a force of
2 N, then the wall will push back on my hand with a force of 2 N in the opposite
direction.

6.1 Working with Forces

6.1.1 Free-body Diagrams

When working with forces, it is often helpful to write a free-body diagram. A
free-body diagram is a picture of an object in the problem with all of the force
vectors drawn on it. The force vectors are usually drawn starting from the
center of the object. Drawing a free-body diagram can help you keep track of
all the forces in the problem and which directions they are acting in.

6.1.2 Equilibrium

An object is said to be in equilibrium when the sum of all the forces acting on an
object is zero (mathematically, this means

∑
i F⃗i = 0). In this situation, all the

forces cancel each other out. By Newton’s second law, an object in equilibrium
will not acceleration (⃗a = 0). This means it will keep moving at a constant
velocity.

6.2 Different Types of Forces

6.2.1 The Gravitational Force

The gravitational force always pulls downward toward the ground (at least when
we are near the surface of the earth). The magnitude of the gravitational force
acting on an object of mass m is

|F⃗g| = mg.
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Remember that the gravitational acceleration g = 9.81 m/s
2
. Note that the

gravitational force F⃗g is not the same as the gravitational acceleration g (don’t
get mixed up and write Fg = g).

We can use Newton’s second law to find the acceleration due to gravity. If
gravity is the only force acting on the object, then

m|⃗a| = |F⃗g| = mg

=⇒ |⃗a| = mg

m
= g.

Notice that the acceleration due to gravity does not depend on the mass m of
the object. This is why I said earlier that gravity gives all objects a constant
acceleration of magnitude g.

Notice that the magnitude of the gravitational force on an object is propor-
tional to its mass. This is the connection between weight and mass. On the
surface of the earth, weight (the force of gravity on an object) is proportional
to mass. The proportionality constant is g (unless we are in outer space or on
a different planet).

6.2.2 Tension

The force on an object when it is being pulled by a string is called tension. The
tension force always pulls along the direction of the string. When two objects
are connected by a string, the magnitude of the string tension is the same at
both ends of a string, as long as there’s nothing in between. For example, if a
weight is hanging from the ceiling by a string, the magnitude of the tension on
the weight is the same as the magnitude of the tension on the ceiling. On the
other hand, if a weight is hanging from the ceiling and a second weight is tied to
the string in between the ceiling and the first weight, then the magnitude of the
tension on the bottom weight is not the same as the magnitude of the tension
on the ceiling.

6.2.3 Normal Forces

When objects come into contact with each other, they exert forces on each other.
These forces (usually) prevent objects from passing through each other. The
direction of the normal force is perpendicular to the surface of the object that
is causing the force. The magnitude of the normal force depends on the exact
situation.

Activity: An object of mass m is resting on a table. The only forces act-
ing on the object are gravity F⃗g and the normal force F⃗N from the table. The
object is not moving. Find the magnitude of the normal force.

Solution: Because the object is not moving, we know that it is in equilibrium.
Therefore, the sum of all forces must be zero: F⃗g+ F⃗N = 0. The direction of the
gravitational force is downward, so Fg,x = 0 and Fg,y = −mg. The direction
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of the normal force is perpendicular to the table, which means it is pointing
upward. Therefore, FN,x = 0. We don’t know what FN,y is, but we know that
Fg,x + FN,y = 0 =⇒ FN,y = −Fg,y = mg. The magnitude of the normal force

is therefore |F⃗N | = mg.

7 Newton’s Laws Examples

7.1 Rotated Coordinates

A ship is moving at a constant speed at an angle of 25◦ south of the westward
direction. The wind is blowing and causing a force of 2000 N on the ship pushing
it south. The ship’s rudder causes a force perpendicular to the ship’s velocity.
The drag force from the water is pointed directly against the ship’s velocity.
Finally, the ship’s propellor causes a force of 8, 000 N that pushes the ship
forward.

Activity: Draw axes and a free-body diagram for the ship.
Solution: See Figure 30.

x (east)

y (north)

F⃗w, 2000 N

F⃗r

F⃗d

F⃗p, 8000 N

25◦

Figure 30: Free-body diagram of the ship problem.

Activity: With the axes in Figure 30, F⃗w points along the y-axis, but no
other vectors lie along an axis. Choose a rotated coordinate system so that
three vectors lies along axes, and only one does not lie along an axis.

Solution: See Figure 31.
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x

y

F⃗w, 2000 N

F⃗r

F⃗d

F⃗p, 8000 N

25◦

Figure 31: Free-body diagram of the ship problem with a rotated coordinate
system. Now F⃗p, F⃗r, and F⃗d lie along the axes. Only F⃗w does not lie along an
axis.

Activity: Write down Newton’s second law for the ship.
Solution: Newton’s second law is∑

i

F⃗i = ma⃗.

This is a two-dimensional problem, so we need to break this equation up into x
and y components: ∑

i

Fi,x = max∑
i

Fi,y = may.

We are told in the problem statement that the ship is traveling at a constant
speed. Therefore, the acceleration of the ship is 0 (whenever you see the words
“constant speed,” this is usually important information). When we put ax = 0
and ay = 0 into Newton’s second law, we get∑

i

Fi,x = 0

∑
i

Fi,y = 0.

If we write out the sum explicitly, remembering to include all the forces, we get

Fp,x + Fr,x + Fd,x + Fw,x = 0

Fp,y + Fr,y + Fd,y + Fw,y = 0.

Most of these components are easy to find because of our choice of coordinate
system.

• Fp,x = −8000 N, because F⃗p lies along the negative x-axis and has a
magnitude of 8000 N.
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• Fr,x = 0 because F⃗r lies along the y-axis, not the x-axis.

• Fd,x is unknown.

• Fp,y = 0 because F⃗p lies along the x-axis.

• Fr,y is unknown.

• Fd,y = 0 because F⃗d lies along the x-axis.

The difficult force is F⃗w. Because F⃗w does not lie along one of the axes, we need
to do more work to find its x and y components. When we work out the geometry
(see Figure 32), we find that Fw,x = −|F⃗w| sin 25◦ = (−2000 N) sin 25◦ ≈ −845
N (negative because it lies closer to the negative x direction) and Fw,y =
(−2000 N) cos 25◦ ≈ −1813 N. If we put all of this into the equations we got
from Newton’s second law, we get

Fp,x + Fr,x + Fd,x + Fw,x = −8000 N + 0 + Fd,x − 845 N = 0

=⇒ Fd,x = 8845 N.

and
Fp,y + Fr,y + Fd,y + Fw,y = 0 + Fr,y + 0− 1813 N = 0

=⇒ Fr,y = 1813 N.
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x

y

F⃗w, 2000 N

(a) Start by drawing a set of
axes through the tail of F⃗w.

x

y

F⃗w

west

25◦

θ
ϕ

(b) We know the velocity is 25◦ below
westward direction. The x-axis in our fig-
ure lies along the same direction as the ve-
locity. Therefore, the x-axis is 25◦ below
the westward direction. We can draw this
on the figure.

x

y

F⃗w

west

25◦

75◦

25◦

(c) We can now find θ and ϕ using the fact
that 25◦ + θ = 90◦ and θ + ϕ = 90◦.

x

y

25◦
F⃗w

Fx

Fy

(d) Draw a right triangle with
the vector as the hypotenuse
and sides parallel to the axes.
In this case, I chose the y axis
as one side and the dashed line
as the other side.

Figure 32: Based on the triangle sin 25◦ = Fx

|F⃗w|
and cos 25◦ =

Fy

|F⃗w|
.

7.2 Ramps

A block sits on a perfectly smooth ramp (no friction). The ramp is at an angle
of 50◦ above the ground.

Activity: Draw a free-body diagram with “normal” (horizontal and verti-
cal) axes. If the block starts to slide down the ramp, will there be acceleration
in the x direction? Will there be acceleration in the y direction
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Solutions: See Figure 33. If gravity starts to pull the block down the ramp,
the combination of gravity and the normal force will cause acceleration in both
the x and y direction.

x

y

N⃗

F⃗g 50◦

Figure 33: Free-body diagram of the ramp problem with “normal” axes.

Activity: Draw a free-body diagram with rotated axes (so that the x-
axis lies along the direction of the ramp). Will there be acceleration in the x
direction? Will there be acceleration in the y direction

Solutions: See Figure 34. Since the block will stay on the ramp as it
moves, it will only move along the x axis, and it will never move along the y
axis. Therefore, the x acceleration will be non-zero, but the y acceleration will
be zero.

x

yN⃗

F⃗g 50◦

Figure 34: Free-body diagram of the ramp problem with rotated axes.

Activity: If the block has a mass of 5 kg, what is the acceleration of the
block?

Solutions: We can use Newton’s second law to find acceleration. As dis-
cussed in the last section, Newton’s second law in component form is

Nx + Fg,x = max

Ny + Fg,y = may.

Note that we are using N⃗ for the normal force (this could also be written as

F⃗N ). We know that

• m = 5 kg.
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• Nx = 0, because the normal force is only along the y direction (perpen-
dicular to the ramp).

• Ny is unknown.

• |Fg| = mg = 5 kg · 9.8 m/s
2
= 49.0 kg · m/s

2
= 49.0 N.

We want to find ax. The only missing piece of information is Fg,x. To find this,

we need to break up F⃗g into components. The result of the geometry in Figure

35 is that Fg,x = |F⃗g| cos 40◦ = 49 N cos 40◦ ≈ 25.7 N. If we put all the values
we found into the Newton’s second law equation, we get

Nx + Fg,x ≈ 0 + 25.7 N = (5 kg)ax

=⇒ ax ≈ 25.7 N

5 kg
≈ 5.14

kg ·m/s
2

kg
= 5.13 m/s

2
.

As we discussed before, ay = 0, so the total acceleration is just 5.13 m/s2.
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x

y

F⃗g

(a) Start by drawing a
set of axes through the
tail of F⃗g.

x

y

F⃗g

50◦

(b) We know that the x-axis
makes an angle of 50◦ with
the horizontal.

x

y

50◦

F⃗g

Fy

Fx

(c) Draw a right triangle
with the vector as the hy-
potenuse and sides parallel
to the axes. In this case, I
chose the x axis as one side
and the dashed line as the
other side.

x

y

50◦F⃗g

Fx

(d) If we draw any hor-
izontal line, it will still
make an angle of 50◦

with the x-axis. In par-
ticular, we can draw a
horizontal line to form
(another) right triangle
with the vector.

x

y

40◦F⃗g

Fx

(e) This lets us find the
other angle.

x

y

40◦
F⃗g

Fx

Fy

(f) Now we know one of
the angles of the original
right triangle.

Figure 35: Based on the triangle sin 40◦ =
Fy

|F⃗g|
and cos 40◦ = Fx

|F⃗g|
.
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7.3 Multiple Hanging Masses

A rock of mass M1 is hanging by a rope. Another rock of mass M2 is hanging
by a rope tied to the first rock (see Figure 36).

Rope

M1

Rope

M2

Figure 36: Two hanging masses.

Activity: Draw a free-body diagram for M1 and a free-body diagram for
M2.

Solution: See Figure 37.
Activity: Find the tension on the top string |T⃗1| and the tension on the

bottom string |T⃗2|.
Solution: We will again use Newton’s second law. This time, however,

there are two objects. Newton’s second law applies to both of them. This is
a one-dimensional problem (all forces lie along the up-down direction), and so
we don’t need to break up Newton’s second law into components. Therefore,
Newton’s second law gives us two equations (one for each mass):∑

i

Fi,M1
= M1a1

∑
i

Fi,M2 = M2a2.∑
i Fi,M1 is the sum of all the forces acting on the first mass, and

∑
i Fi,M2 is

the sum of all the forces acting on the second mass. If we write out the sum
explicitly, referring to the free-body diagram, we get

T1 − T2 − Fg,M1 = M1a1

T2 − Fg,M2 = M2a2.

We know that

• a1 = a2 = 0 (both masses are not moving).

• |Fg,M1
| = M1g.

• |Fg,M2
| = M2g.
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Putting in this information, Newton’s second law becomes

T1 − T2 − gM1 = 0

T2 − gM2 = 0.

We can solve the second equation for T2 to get T2 = gM2, and then we can
replace T2 in the first equation with gM2 to get

T1 − gM2 − gM1 = 0

=⇒ T1 = g(M1 +M2).

So the tension in the bottom string is just T2 = gM2, and the tension in the
top string is T1 = g(M1 +M2). This makes a lot of sense if you think about it.
The second string only need to hold up the weight of the second mass, but the
first string need to hold up the weight of the first mass and the second mass.

T⃗1

F⃗g,M1T⃗2

T⃗2

F⃗g,M2

M1 M2

Figure 37: The first mass has the tension of the top string T⃗1 pulling up, gravity
pulling down, and the tension of the second string T⃗2 pulling down. The second
mass has the tension of the second string T⃗2 pulling up and gravity pulling
down.

7.4 Atwood’s Machine

Atwood’s machine is made of a pulley and two hanging masses. The masses are
connected to each other by a string and hang from the pulley, with one mass on
each side of the pulley (see Figure 38).
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Pulley

M1 M2

Figure 38: One version of Atwood’s machine. Two masses connected to the
same string are hanging from a pulley.

Activity: Draw a free-body diagram for each mass in Atwood’s machine.
Solution: See Figure 39.

T⃗1

F⃗g,M1

T⃗2

F⃗g,M2

M1 M2

Figure 39: The free-body diagram for Atwood’s machine.

Activity: Find the acceleration of each mass.
Solution: This is a one-dimensional problem. Even though the masses are

in two different locations, they can each only move up and down, and all forces
are in the up-down direction. Newton’s second law for the first mass and for
the second mass gives:

T1 −M1g = M1a1

T2 −M2g = M2a2.

There are two important things we can figure out about Atwood’s machine:

• T1 = T2. Because both masses are connected by the same rope, and
because there is nothing in between the masses except the pulley (which
we will assume turns freely without any effort), both tensions have the
same magnitude (and direction, because they both point up).

• a1 = −a2. Because both masses are connected by a rope, when one of them
speeds up in one direction, the other will also speed up in the opposite
direction.
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Given this information, we will just write T instead of T1 and T2. If we put this
information into Newton’s second law, we get

T −M1g = M1a1

T −M2g = −M2a1.

We can solve the second equation to get T = M2g−M2a. Putting this into the
first equation, we get

M2g −M2a1 −M1g = M1a1

=⇒ a1 = g
(M2 −M1)

(M1 +M2)
.

Then since a2 = −a1,

=⇒ a2 = g
(M1 −M2)

(M1 +M2)
.

8 Circular Motion, Hooke’s Law, and Friction

8.1 Circular Motion

A car is traveling along a circular path of radius 250 m at a constant speed of 30
m/s. As it is driving, it goes over some ice. The ice reduces the friction between
the car and the road to zero. Normally, the car would slide off the road.

We can choose the y axis to lie along the direction that the car is moving
when it hits the ice, and the x axis to point toward the center of the circle (see
Figure 40).

x

yv⃗

a⃗
Car

Figure 40: A car traveling in a circle.

Remember that, since the car is traveling on a circular path at a constant speed,
the car is in uniform circular motion. In uniform circular motion, the car has an

acceleration of magnitude v2

R and a direction pointing towards the center of the
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circle. According to Newton’s second law, the amount of total forces required
to produce this acceleration is∑

i

Fi,x = max = m
v2

R
.

Normally this force would be provided by friction. However, without friction,
the only forces on the car are gravity and the normal force, which point along
the up-down direction (in our picture, this would be into and out of the page).

Discussion: How can the road be designed so that the car will not slide
off? Assume that the only forces acting on the car will be the normal force and
gravity.

Solution: We cannot change the direction of the gravitational force, but we
can change the direction of the normal force by tilting the road (see Figure 41).

x

upN⃗

F⃗g

θ

Car
Road

Figure 41: We can tilt the road so that the normal force has an x-component
pointing along the x-direction toward the center of the circle.

Activity: What is the angle θ required so that the car will continue moving
along the circle?

Solution: I’m going to change my y axis to point in the upward direction
(instead of in the direction of the car’s velocity as in Figure 40). By Newton’s
second law:

Nx + 0 = max = m
v2

R
=⇒ Nx =

mv2

R

Ny −mg = may = 0 =⇒ Ny = mg.

Based on Figure 42,

ϕ = arctan

(
Ny

Nx

)
= arctan

(
mg

mv2/R

)
= arctan

(
gR

v2

)
.

Using v = 30 m/s, R = 250 m, and g = 9.8 m/s2, we get

ϕ ≈ 69.8◦,

which means
θ ≈ 20.17◦.
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Notice that we did not need to use the mass m of the car, so this angle would
work for cars of any mass.

x

up

θ

θ

ϕ

N⃗

Nx

Ny
Road

Figure 42: The between the road (the dotted line) and the horizontal (the
x-axis) is θ. We can use the fact that opposite angles are equal to see that
θ is also the angle of the dotted line below the x-axis. Finally, we can use
the fact that θ + ϕ = 90◦ to get ϕ = 90◦ − θ. We can use the fact that
ϕ = arctan( oppositeadjacent ) = arctan(

Ny

Nx
) to find ϕ.

8.2 Hook’s Law

When a spring or other elastic material is stretched or compressed, it exerts a
force that tries to return the spring to its natural length. The change in the
length of the spring is often written as ∆x = xf − x0, where x0 is the natu-
ral length of the spring, and xf is its length after being compressed or stretched.

Discussion: A spring of unknown length is stretched by 0.02 m. What is
∆x?

Solution: Even though we don’t know the original length of the spring, we
know ∆x is the change in length, and so ∆x = ±0.02 m (the sign depends on
which direction is positive).

Discussion: If ∆x is positive, what should the force of the spring F⃗s be positive
or negative?

Solution: If ∆x = xf −x0 is positive, that means xf > x0. In other words, the
final position of the spring lies further in the positive direction than the natural
length of the spring. Since the spring wants to return to its natural position,
the force of the spring will pull in the negative direction.

Every spring is different. However, we can use approximations for the force
caused by a spring. The simplest approximation would be Fspring = k, where k
is some constant that depends on the spring.
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Discussion: Does the approximation Fspring = k make sense?

Solution: The approximation Fspring = k does not make sense. It would imply
that the force of a spring pushes in the same direction (positive if k is positive,
or negative if k is negative) regardless of whether you stretch the spring or com-
press.

We expect that Fspring should depend on ∆x in some way (the force of a spring
depends on how much you change its length). We could make the guess that

Fspring = k1∆x+ k2∆x2 + k3∆x3 + · · · ,

where each ki is some constant that might depend on which spring we are
using. This form is very general. Many functions can be written, or at least
approximated, by choosing different values for each ki. However, this form is
also complicated and not very useful. However, if we make the approximation
that ∆x is small, then the terms k2∆x2 + k3∆x3 + · · · will be even smaller
than the term k1∆x. For example, if ∆x = 0.1, then ∆x2 = 0.01 which is even
smaller, and ∆x3 = 0.001 which is even smaller. As an approximation, we can
ignore all the terms with higher powers of ∆x and just use

Fspring = −k∆x.

I included a minus sign to remind us that the force has the opposite sign com-
pared to ∆x. This is called Hooke’s law. It is often a good approximation for
the force of a spring. The constant k depends on the properties of the spring,
and is called the spring constant.

8.3 Friction

Another force that can vary a lot depending on the circumstances is friction.
Friction is the name for forces which resist the motion of an object.

Discussion: An object is moving in the negative x direction. What is the
direction of friction?

Solution: Friction resists motion. Since the object is moving in the nega-
tive x direction, friction will point in the positive x direction.

Discussion: An object is at rest. Is it being pulled in the positive x direc-
tion with a force of 2 N. The only other force acting on the object is friction.
What is the magnitude and direction of the force of friction Ff?

Solution: From Newton’s second law, and the fact that the object is not mov-
ing, we know that the total force in the x direction must be 0. Since the only
forces are friction and the force of 2 N, these force must cancel out. Since the
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force of 2 N is pulling in the positive x direction, friction must be pulling with
an equal force of 2 N in the negative x direction (resisting the motion).

Even though friction is complicated, we can use simple approximations. To
make these approximations, we need to distinguish between two types of fric-
tion. Static friction is the force of friction when an object is at rest (not moving).
Kinetic friction is the force of friction when an object is moving. Static friction
is usually stronger than kinetic friction. This is because of various processes at a
molecular level. The force of static friction always has whatever magnitude and
direction it needs to prevent an object from moving. The maximum amount of
force from static friction is

|Fs| ≤ µs|N⃗ |,

where µs (the coefficient of static friction) is some constant that depends of

the object and the surface on which it is resting, and |N⃗ | is the magnitude of
the normal force between the object and the surface. Once the static friction
reaches this magnitude, it cannot go any higher, and so the object will start
moving. Once the object starts moving, the magnitude of the force of kinetic
friction is

|Fk| = µk|N⃗ |,

where µk is the coefficient of kinetic friction, which once again depends on the
surface and the object.

8.3.1 Example

Activity: An box of mass m = 25 kg is being pulled across a flat table by a
spring. The box starts moving only when the spring is stretched by 1 m. The
coefficient of static friction is µs = 0.6. Find the spring constant k.

Solution:
The horizontal direction:
Right before the box starts moving, the static friction must be at its maximum
level Fs = µs|N⃗ |. Therefore, at this moment, the spring must be providing a

force of equal magnitude |Fspring| = |Fs| = µs|N⃗ |.

The vertical direction:
The force of gravity and the normal force must add to zero. Therefore, |N | =
|Fg| = mg.

We found |Fspring| = µs|N | = µsmg. On the other hand, by Hooke’s law,
|Fspring| = k∆x. Therefore,

k∆x = µsmg

=⇒ k =
µsmg

∆x
=

0.6 · 25 kg · 9.8 m/s
2

1 m
= 147 N/m.
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9 The Work-Energy Theorem

9.1 The Dot Product

We have talked about how to add vectors, either visually or using Cartesian
coordinates, but we have not talked about how to multiply vectors. The dot
product is one way to multiply two vectors together to get a single number. The
dot product of A⃗ and B⃗ is defined as

A⃗ · B⃗ = |A⃗||B⃗| cos θ,

where θ is the angle between A⃗ and B⃗. Notice that

• |A⃗||B⃗| cos θ is a number, not a vector. It has a magnitude, but it does not
have a direction.

• If the vectors are perpendicular (θ = 90◦), then A⃗ ·B⃗ = |A⃗||B⃗| cos 90◦ = 0.

• If the vectors are pointing in the same direction (θ = 0), then A⃗ · B⃗ =

|A⃗||B⃗| cos 0◦ = |A⃗||B⃗|.

• If the vectors are pointing in the opposite direction (θ = 180◦), then

A⃗ · B⃗ = |A⃗||B⃗| cos 180◦ = −|A⃗||B⃗|.

There is another equation we can use to calculate the dot product:

A⃗ · B⃗ = AxBx +AyBy.

This equation gives exactly the same result as the previous equation. You can
use either equation to calculate the dot product. Depending on what informa-
tion you already have, one equation might be easier to use than the other.

9.1.1 Constant Dot Product

If the dot product F⃗tot · dr⃗ = |Ftot| cos θdr is constant, then the work is just

W =

∫ r⃗f

r⃗i

F⃗tot · dr⃗ = |Ftot| cos θ
∫
path

dr = |Ftot||∆r| cos θ.,

where |∆r⃗| is the total length of the path along which the object travels from
r⃗i to r⃗f .

9.2 The Work-Energy Theorem

Newton’s second law says that

ma⃗ =
∑
i

F⃗i.
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If we define F⃗tot =
∑

i F⃗i and remember that a⃗ = dv⃗
dt , this equation becomes

m
dv⃗

dt
= F⃗tot.

We want to get rid of the vectors, but we also want the resulting equation to be
useful. One very useful way to get rid of the vectors is to take the dot product
of both sides of the equation with dr⃗ (this time, I’m using r⃗ instead of x⃗ to
represent position) and to take the integral of both sides:∫ r⃗f

r⃗i

m
dv⃗

dt
· dr⃗ =

∫ r⃗f

r⃗i

F⃗tot · dr⃗.

On the left-hand side, we can switch the dv⃗ with the dr⃗ to get∫ v⃗f

v⃗i

m
dr⃗

dt
· dv⃗ =

∫ r⃗f

r⃗i

F⃗tot · dr⃗.

Remember that dr⃗
dt = v⃗, and so the integral on the left is∫ v⃗f

v⃗i

m
dr⃗

dt
· dv⃗ =

∫ v⃗f

v⃗i

mv⃗ · dv⃗ =

(
1

2
mv⃗ · v⃗

) ∣∣∣v⃗f
v⃗i

=
1

2
m|v⃗f |2 −

1

2
m|v⃗i|2.

Therefore

1

2
m|v⃗f |2 −

1

2
m|v⃗i|2 =

∫ r⃗f

r⃗i

F⃗tot · dr⃗.

This is the work-energy theorem. On the left-hand side, there are no more
vectors. There is the mass, the magnitude of the final velocity |v⃗f |, and the
magnitude of the initial velocity |v⃗i|. We define the kinetic energy as

K =
1

2
m|v⃗|2.

Then the work-energy theorem becomes

∆K =

∫ r⃗f

r⃗i

F⃗tot · dr⃗.

The right-hand side of this equation still looks very complicated. This inte-
gral is called the total work done by the force F⃗tot. We often use the variable
W to mean work:

W =

∫ r⃗f

r⃗i

F⃗tot · dr⃗.

Using this definition, we can write the work-energy theorem simply as

∆K = W.

The integral to calculate work W is complicated, but it becomes much simpler
in certain circumstances.

53



9.2.1 Conservative Forces

For certain types of forces, we will be able to calculate the work integral and
get a simple result. These forces are called conservative forces. Gravity and the
spring force given by Hooke’s law both are both conservative forces. Friction is
not a conservative force.

Hooke’s Law
Because a spring which obeys Hooke’s law gives a conservative force, we can
calculate the work done by a spring. In one-dimension,

Wspring =

∫ xf

xi

Fspringdx =

∫ xf

xi

(−kx)dx = −1

2
k∆(x2).

Gravity
In one dimension, the work done by gravity is

Wgrav =

∫ yf

yi

Fgravdy =

∫ yf

yi

(−mg)dy = −mg∆y.

Actually, this formula is also true in more than one dimension:

Wgrav = −mg∆y,

where ∆y is the change in the object’s height.

10 Potential Energy and Energy Conservation

In the last lecture, we talked about conservative forces, with gravity and Hooke’s
law as examples. We found that

Wspring = −1

2
k∆(x2)

and
Wgrav = −mg∆y.

For these conservative forces, the force-energy theorem becomes a lot simpler.
For example, for gravity,

∆K = Wgrav = −mg∆y.

If we write this out using the definition of ∆K and ∆y, we get

1

2
m|v⃗2f | −

1

2
m|v⃗2i | = −(mgyf −mgyi).
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Notice that there are no vectors in this equation. We can rearrange this equation
to show that

1

2
m|v⃗2f |+mgyf =

1

2
m|v⃗2i |+mgyi.

Notice that both sides of this equation look similar. The only difference is
that the left side is evaluated at the final time, and the right side is evaluated
at the initial time. The work-energy theorem is telling us that the quantity
1
2m|v⃗2|+mgy says the same no matter which time we evaluate it. This quantity
is called the total energy.

More generally, for any conservative force, we can define a potential energy
U in such a way that the total energy E, defined by

E = K + U,

stays the same at all points in time. In other words,

Ef = Ei.

As we just saw, the potential energy for gravity is

Ugrav = mgy.

The potential energy for a spring that obey’s Hooke’s law is

Uspring =
1

2
kx2.

11 Advanced Forces

11.1 Newton’s Third Law

Remember that Newton’s third law says that if object A causes a force on
object B, then object B causes a force on object A that is equal in magnitude,
but opposite in direction.

11.1.1 Stacked blocks

Activity: Suppose two blocks are stacked on top of each other. The coefficient
of static friction between the two blocks is µs = 0.6. There is a force F⃗ on the
bottom block pushing it to the right. Draw free-body diagrams for each block.

Solution: For the top block, the only forces are gravity (pointing down), the
normal force (pointing up) and the force of static friction which prevents the
block from moving relative to the bottom block. Since the bottom block is being
pushed to the right, the force of static friction on the top block must also point
to the right so that the top block keeps up with the bottom block.

The bottom block experiences the force of gravity (pointing down) and the

force F⃗ (pointing right). However, these are not the only forces. Because the
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top block experiences a normal force from the bottom block, by Newton’s third
law, the bottom block experiences a normal force from the top block of equal
magnitude pointing down. Similarly, since the top block experiences a force
from static friction pointing right, the bottom block experiences a force of equal
magnitude pointing left.

11.2 Centripetal Forces

Earlier, we learned that an object in uniform circular motion (circular motion
at a constant speed) has an acceleration that points toward the center of the
circle and has magnitude

ac =
|v⃗|2

R
,

where R is the radius of the circle. Based on Newton’s second law, we know that
this acceleration must be caused by some force. A force that causes an object
to move in uniform circular motion is called a centripetal force. The centripetal
force can come from many different sources. For example, the centripetal force
could be caused by gravity, tension, spring forces, or normal forces. Whatever
the source of the centripetal force is, we know that the direction of the centripetal
force must be toward and the center of the circle, and its magnitude must be

Fc =
m|v⃗|2

R
.

If either of these things were not true, then the object would not have the proper
acceleration, and so it would not move in uniform circular motion.

11.2.1 Spinning with friction

Activity: A plate is spinning about its center at a constant speed. There is a
block resting on the plate at a distance of 0.02 m from its center. The coefficient
of static friction between the plate and the block is µs = 0.2. Because the plate
is spinning, the block is moving at a speed v. What is the maximum speed v
before the block will fly off the plate?

Solution: Because the block is in uniform circular motion, its acceleration

must have magnitude |v⃗|2
R and be pointed towards the center of the plate. In

order to produce this acceleration, the force on the block must have magnitude

Fc =
m|v⃗|2

R

and be pointed toward the center of the plate. Start by drawing a free-body
diagram for the block. The only forces acting on it are gravity, the normal
force, and static friction. Gravity and the normal force are pointed along the
up-down direction, and so they cannot produce acceleration toward the center
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of the plate. The only force that can produce this acceleration is static friction.
The maximum value of static friction is

Fs ≤ µs|N⃗ |.

We need to find N⃗ . Because the object is not accelerating in the up-down
direction, the normal force and gravity must cancel each other out by Newton’s
second law. Therefore, |N⃗ | = mg, and

Fs ≤ µsmg.

To avoid flying off the plate, the force caused by friction must be m|v⃗|2
R . There-

fore, we must have
m|v⃗|2

R
≤ Fs,max = µsmg

=⇒ |v⃗|2 ≤ µsgR

=⇒ |v⃗| ≤
√

µsgR =

√
0.2 · 9.8 m/s

2 · 0.02 m ≈ 0.2 m/s

11.2.2 Conical Pendulum

Activity: A conical pendulum is a pendulum that moves in a circle (when
viewed from above). It is called conical because the string traces out a cone
shape. If the string is 2 m long and the weight at the end of the string moves in
a circle of radius 0.7 m at a constant speed, what is the period of the pendulum
(the amount of time it takes to complete one circle)?

Solution: There are several steps to this problem. One way to find the period
would be to first find the speed of the pendulum. To find the speed, we can use
the fact that the weight is moving in uniform circular motion. That means

|⃗a| = |v⃗|2

R

=⇒ |v⃗| =
√
|⃗a|R

We know R = 0.7 m from the description of the problem. We don’t yet know
|⃗a|, but we can try to figure this out using Newton’s second law. First, draw
a free-body diagram for the weight. The only two forces are gravity and the
tension from the string. If we define the y axis to point up, and the x axis to
point toward the center of the circle, then for gravity

Fg,x = 0 and Fg,y = −mg.

For the tension force, we need some trigonometry. If the length of the string is
2 m, and the distance of the weight from the center of the circle is 0.7 m, then
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we can form a right triangle with 2 m as the hypotenuse and a vertical line as
one side. The angle θ of the string above the horizontal direction is

θ = arccos

(
0.7 m

2 m

)
≈ 69.5◦.

Therefore, the tension force T⃗ has x and y components

Tx = |T⃗ | cos 69.5◦ and Ty = |T⃗ | sin 69.5◦.

From Newton’s second law for the y components,

Ty + Fg,y = may = 0

=⇒ |T⃗ | sin 69.5◦ −mg = 0

=⇒ |T⃗ | = mg

sin 69.5◦
.

From Newton’s second law for the x components,

Tx + Tg,x = max

=⇒ |T⃗ | cos 69.5◦ + 0 = max

=⇒ ax =
|T⃗ | cos 69.5◦

m
=

mg cos 69.5◦

m sin 69.5◦
=

g cos 69.5◦

sin 69.5◦
≈ 3.66 m/s

2
.

If we put this into our formula for |v⃗|, we get

|v⃗| =
√
|⃗a|R ≈

√
3.66 m/s

2 · 0.7 m ≈ 1.6 m/s.

Now we can find the period. Since the circle has a circumference of 2πR, the
amount of time it takes to complete one circle is

T =
distance

speed
=

2πR

1.6 m/s
≈ 2.7 s.

12 Power

Power is defined as the rate at which work is done. Mathematically,

P =
d

dt
W ≡ d

dt

∫
path

F⃗ · dr⃗.

Large power means that work is being done quickly, while low power means
work is being done slowly. The average power is given by the formula

Pav =
W

t
,
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where W is the total work done, and t is the amount of time it took to do this
work. If the work is constant, then this formula gives the exact power.

The units of power are Joules per second (J/s). These are the units of
work/energy (Joules) divided by units of time (seconds). Joules per second are
also called Watts (abbreviated “W”).

W ≡ J

s
≡ kg ·m2

s3
.

12.1 Force Times Velocity

When F⃗ · dr⃗ is constant along the object’s path, we found that the amount of
work done is

W = |F⃗const|∆r cos θ,

where θ is the angle between the force and the direction in which the object is
moving. In this case, the power is

P =
d

dt
W = |F⃗const|

d

dt
∆r cos θ = |F⃗const||v⃗| cos θ.

12.2 Car Problem

Activity: A car of mass 4000 kg starts at rest and then accelerates at a con-
stant rate of 10 m/s2. What is the power of the car as a function of time?

Solution: The force of the car is given by Newton’s second law:

F = ma = 4000 kg · 10 m/s
2
= 40000 N.

The velocity is
v = v0 + at = 0 + 10 m/s

2 · t.

Since the force is constant and the car doesn’t change directions, F⃗ · dr⃗ is
constant. Therefore,

P = |F⃗const||v⃗| cos θ = (40000 N)(10 m/s
2 · t) cos 0◦ = 400000 N · m/s

2 · t

= 400000
kg · m

s2
· m/s

2 · t = 400000
kg · m2

s4
· t

13 Center of Mass

Intuitively, the center of mass is supposed to be the center of an object (or a
system of multiple objects), but it is weighed to give more importance to objects
that are more massive.
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2 m

4 m

x = 0m1 = 3 kg m2 = 4 kg

Figure 43: Example of a 1D center-of-mass problem. The center of mass is

located at xCOM = (3 kg)(−2 m)+(4 kg)(4 m)
3 kg+4 kg ≈ 1.43 m

13.1 One Dimension

13.2 Two Points

Suppose we have two massive points. One of them has mass m1 and is located
at x1, and the other has mass m2 and is located at x2. Then the center of mass,
xCOM, is defined as

xCOM ≡ m1x1 +m2x2

m1 +m2
.

xCOM will lie somewhere in between x1 and x2. More specifically:

• If the masses are the same (m1 = m2), then xCOM will be exactly in the
middle between x1 and x2.

• If m1 is bigger than m2, then xCOM will still be in between, but it will be
closer to x1.

• If m2 is bigger than m1, then xCOM will still be in between, but it will be
closer to x2.

See Figure 43 for an example.

13.2.1 Multiple Points

Suppose we have multiple massive points with masses m1, m2, m3 etc. and
locations x1, x2, x3, etc. Then the center of mass is defined as

xCOM ≡
∑

i mixi∑
i mi

≡ m1x1 +m2x2 +m3x3 + · · ·
m1 +m2 +m3 + · · ·

.

13.3 Multiple Dimensions

In two or three dimensions, the center-of-mass equation above holds for each
coordinate separately:

xCOM ≡
∑

i mixi∑
i mi

.
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m1 = 3 kg

m2 = 4 kg

1 m

1 m

Figure 44: Example of a 2D center-of-mass problem. The center of mass is

located at x-coordinate xCOM = (3 kg)(−3 m)+(4 kg)(2 m)
3 kg+4 kg ≈ −0.143 m and y-

coordinate yCOM = (3 kg)(1 m)+(4 kg)(−1 m)
3 kg+4 kg ≈ −0.143 m (which happens to be

the same as the x-coordinate).

yCOM ≡
∑

i miyi∑
i mi

.

zCOM ≡
∑

i mizi∑
i mi

.

See Figure 44 for an example.

13.4 Symmetric Objects

For a massive object like a ball or a cube that is not just a single point, we
would in general have to use calculus to find the center of mass. However,

• if the object has some symmetry so that it’s clear where its center is,

• and if the mass is uniformly distributed throughout the object,

then the center of mass is just the center of the object. See Figure 45 for some
examples.

13.5 Superposition Principle

Suppose we have multiple objects (for example, a square and a cube). To find
the center of mass of the whole system we just need to find the center of mass
of each object individually x⃗COM,1, x⃗COM,2, etc. and then combine them using
the center-of-mass formula:

x⃗COM ≡
∑

i Mix⃗COM,i∑
i Mi

,
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m1 = 3 kg

m2 = 4 kg

1 m

1 m

Figure 45: Example of center-of-mass problems with extended objects. Assum-
ing the mass is distributed uniformly, the center of mass of the diamond is in the
center of the diamond at xCOM = −2 m and yCOM = 2 m. The center of mass
of the rectangle is located at its center at xCOM = 2 m and yCOM = −2 m. The
center of mass of the entire system (the diamond and the rectangle together) is

given by the superposition principle: xCOM = (3 kg)(−2 m)+(4 kg)(2 m)
3 kg+4 kg ≈ 0.286 m

and yCOM = (3 kg)(2 m)+(4 kg)(−2 m)
3 kg+4 kg ≈ −0.286 m

where Mi is the total mass of object i and xCOM,i is the center of mass of object
i by itself. See Figure 45 for an example.

13.6 Dynamics of Center of Mass

We can rewrite the center-of-mass equation as

Mx⃗COM =
∑
i

mix⃗i

If we take the time derivative of both sides of this equation, we get (assuming
mass is constant)

d

dt
(Mx⃗COM) =

d

dt

(∑
i

mix⃗i

)
=⇒ M

dx⃗COM

dt
=
∑
i

mi
dx⃗i

dt

=⇒ Mv⃗COM =
∑
i

miv⃗i.

If we take the time derivative again, we get

Ma⃗COM =
∑
i

mia⃗i.

In these equations, vCOM tells us how fast the center of mass of the system is
moving (each part of the system may be moving with different velocities v⃗i, but
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the center of mass is moving at velocity v⃗COM). Similarly, a⃗COM tells us how
fast the center of mass is accelerating.

Now we can use Newton’s Second Law:

Ma⃗COM =
∑
i

mia⃗i =
∑
i

F⃗i

This second sum is now a sum over all forces acting on any object in the system
(remember, there can be more than one force acting on each object). This gives
us a way to find out how fast a system is accelerating. Actually, we can make
this even simpler! Remember that Newton’s Third Law says that whenever one
object exerts a force on another object, there is an equal but opposite force.
That means that a lot of the forces in the sum

∑
i F⃗i actually cancel each other

out. At the end of the day, the only force that do not get canceled out are
external forces. These are forces that are caused by objects outside of the
system.

Example: (See Figure 46) Imagine a system of two balls connected to each
other by a spring and falling towards the ground. When ball 1 moves, it might
stretch the spring and cause a force on ball 2. Ball 2 is also stretching the
spring, and so it exerts an equal but opposite force on ball 1. The spring forces
are internal forces: they are caused by objects within the system. Gravity is an
external force: it is cause by the earth, which is not part of the system as we
have defined it. Therefore, the acceleration of the center of mass will be

Ma⃗COM =
∑
i

F⃗i,external = F⃗g,ball 1 + F⃗g,ball 2

The only external forces are the force of gravity on ball 1 and the force of gravity
on ball 2.

Ball 1

Ball 2

Spring

xCOM

Figure 46: The spring forces (blue) cancel each other out, leaving only the
external gravitational forces (red) on ball 1 and ball 2.

To summarize, we have found that the acceleration of the center of mass of
a system is time the total mass M is given by the sum of the external forces
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acting on objects in the system:

Ma⃗COM =
∑
i

F⃗i,ext.

14 Momentum and Inelastic Collisions

14.1 System Equilibrium

What if there are no external forces acting on a system? Then

Ma⃗COM =
∑
i

F⃗i,ext = 0.

This means that a⃗COM = 0 and v⃗COM must be constant. When there are no
external forces, the center of mass moves at a constant velocity.

Example: (See Figure 47) Imagine a person standing at one end of a canoe
that is at rest. The person then walks toward the other end of the canoe.
Assuming there are no external forces acting on the canoe (the water is perfectly
still and frictionless) what will happen to the canoe? Initially, the canoe and
person are at rest. If we treat them as a system, their center of mass must
initially have velocity v⃗COM = 0. Since there are no external forces, v⃗COM

must remain constant at 0. In other words, the center of mass does not move.
Therefore, when the person moves across to the other side of the canoe, the
canoe must move in the opposite direction so that all together, their center of
mass stays in the same place.

14.2 Momentum

We will now briefly change the topic to discuss momentum. The momentum of
an object is defined as

p⃗ = mv⃗.

Note that momentum is a vector. If we take the time derivative of this equation,
we get (assuming mass is constant),

dp⃗

dt
= m

dv⃗

dt
= ma⃗ =

∑
i

F⃗i.

Actually, dp⃗
dt =

∑
i F⃗i holds even if mass is not constant and is a more correct

form of Newton’s Second Law.
For a system of multiple objects, we can define the total momentum p⃗ as the

sum of the momenta of each individual object in the system:

p⃗ =
∑
i

p⃗i. =
∑
i

miv⃗i = Mv⃗COM.
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xc xpxCOM

xcxp xCOM

Figure 47: The x-components of the center of mass of the person xp and of the
canoe xc are marked. As the person moves toward the other side of the canoe,
the canoe must move in the opposite direction so that the total center of mass
xCOM remains unmoving.
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If there are no external forces on the system, then the total momentum p⃗ is
constant (because v⃗COM is constant). This will turn out to be a very useful fact
for solving collision problems.

Practice problem: An astronaut of mass 80 kg is stranded in space outside
of the spaceship. The astronaut is initially at rest relative to the spaceship. The
astronaut throws a wrench of mass 2 kg with velocity 10 m/s in the direction
away from the space ship.

• What is the initial total momentum of the astronaut-and-wrench system?

• What is the final momentum of the wrench?

• What is the final momentum of the astronaut?

• How fast and in what direction is the astronaut moving after throwing the
wrench?

Answer: The astronaut and wrench initially have no velocity, and so their
total momentum is zero. We will choose the direction away from the spaceship
to be negative and towards the spaceship to be positive. Therefore, after being
thrown, the wrench has a momentum pw = mwvw = −(2 kg)(10 m/s) = −20kg·
m/s. Now we need to find the momentum of the astronaut pa. The total
momentum ptotal = pw+pa must be constant, since there are no external forces.
Since the initial total momentum was zero, we conclude 0 = ptotal = pw + pa.
Therefore, pa = −pw = +20kg ·m/s. By definition, pa = mava. We can solve
this equation for the astronaut’s final velocity:

va =
pa
ma

=
20kg ·m/s

80kg
= 0.25 m/s.

The speed is 0.25 m/s and the direction is towards the spaceship (since va is
positive).

14.3 Collisions and Explosions

Imagine a process in which multiple objects collide. If there are no external
forces, the the total momentum of the colliding objects is conserved. For exam-
ple, suppose two cars crash into each other. If neither driver applies the brakes,
we can probably ignore external forces like friction. Then the total momentum
of the cars will be conserved in the collision.

An explosion is just a time-reversed collisions (see Figure 48). If there are no
external force, momentum will also be conserved in an explosion. For example,
when a firework explodes, the exploded pieces will continue moving upwards. If
we ignore external forces like gravity, the center of mass of all of these piece will
continue moving at the same velocity the firework had before the explosion.
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Figure 48: In an explosion, objects come apart. In a collision, objects come
together.

14.3.1 Inelastic Collisions

Sometimes knowing that the total momentum is conserved is enough information
to completely solve a collision or explosion problem, but sometimes we need
more information. In an elastic collision, both momentum and energy are
conserved. We will talk more about elastic collisions later.

A collision in which energy is not conserved is called an inelastic collision.
In this course, the main examples of inelastic collisions are collisions where
the objects stick together after colliding. Collisions in which the objects stick
together are always inelastic collisions. For example, if a ball collides with a
lump of clay and sticks to it, this is an inelastic collision. The opposite of this
kind of inelastic collision is an explosion: the objects initially stick together
before exploding apart. In these kinds of problems, we can use conservation of
momentum to predict the outcome of the collision/explosion.

Practice Problem: A bullet of mass 0.01 kg is shot into a block of wood of
mass 2 kg and becomes stuck in the block. Initially, the block is at rest. After
the bullet becomes stuck in it, it starts moving at a speed of 2 m/s. What is
the initial velocity of the bullet?

Answer: This is a typical inelastic collision problem. The initial momentum
of the system comes only from the bullet (since the block is initially at rest)

pinitial = mbulletvi,bullet.

For the final momentum, both the bullet and block are moving. Since the
bullet is stuck in the block, they are both moving at the same velocity. This is
an important point in inelastic collision problems when objects stick together.
Let’s call the final velocity of the bullet and the block vf . Then

pf = mbulletvf +mblockvf .

This must be equal to the initial momentum:

pi = pf
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=⇒ mbulletvi,bullet = mbulletvf +mblockvf

Solving for vi,bullet, we get

vi,bullet =
mbulletvf +mblockvf

mbullet
=

(0.01 kg)(2 m/s) + (2 kg)(2 m/s)

0.01 kg

= 402 m/s.

Practice Problem: As shown in Figure 49, a plate of mass 10kg which
is initially at rest explodes into three pieces. One of the pieces with mass
m1 = 2 kg travels with a velocity of magnitude |v⃗1| = 94 m/s at an angle of
40◦ to the left of the negative vertical. Another piece of mass m2 = 5 kg travels
with a velocity of magnitude |v⃗2| = 65 m/s straight up. What is the velocity of
the last piece v⃗3?

40◦

m1

v⃗1

v⃗2

m2

m3
v⃗3

Figure 49: A plate explodes into three pieces.

Answer: This is a typical explosion problem. Since the plate was initially
at rest, the initial total momentum if p⃗i = 0. After the explosion, we can find
the momentum of m1 and m2. Remember that momentum is a vector, and
so in this two-dimensional problem, we need to calculate x and y components
separately. As usual, we will choose up as the positive y direction and right
as the positive x direction. To break up v⃗1 into components, we note that v⃗1
makes an angle of 50◦ below the negative x-axis, and that both the x and y
components should be negative.

p1,x = m1v1,x = −m1|v⃗1| cos(50◦) = −(2 kg)(94 m/s) cos(50◦) ≈ −121 kg ·m/s

p1,y = −m1|v⃗1| sin(50◦) =≈ −144 kg ·m/s

For m2, the velocity is directly upward, and so

p2,x = m2v⃗2,x = 0
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p2,y = m2v⃗2,y = (5 kg)(65 m/s) = 325 kg ·m/s

Now we can find p⃗3 using the fact that momentum is constant (assuming no
external forces are present):

0 = p⃗i = p⃗f = p⃗1 + p⃗2 + p⃗3

Like all vector equations, this equation must hold for both the x and y compo-
nents:

p1,x + p2,x + p3,x = 0

=⇒ p3,x = −p1,x − p2,x = −(−121 kg ·m/s)− 0 = 121 kg ·m/s

and similarly
p1,y + p2,y + p3,y = 0

=⇒ p3,y = −p1,y − p2,y = −(−144 kg ·m/s)− (325 kg ·m/s) = −181 kg ·m/s

Now we can find v⃗3 using
p⃗3 = m3v⃗3.

Since the initial plate had mass 10 kg, we conclude that

m3 = 10 kg−m1 −m2 = 10 kg− 2 kg− 5 kg = 3 kg.

Then

v3,x =
p3,x
m3

=
121 kg ·m/s

3 kg
≈ 40.3 m/s

and

v3,y =
p3,y
m3

=
−181 kg ·m/s

3 kg
≈ −60.3 m/s.

15 Advanced Momentum

15.1 Inelastic Collisions

We can prove that collisions in which objects stick together are inelastic. Imag-
ine two blocks with masses m1 and m2 and velocities v1 and v2 that collide with
each other and stick together. The initial momentum is

pi = m1v1 +m2v2.

and the final momentum is

pf = m1vf +m2vf

(remember, vf is the same for both blocks because they stick together.) Since
momentum in conserved in collisions (as long as there are no external forces),

pi = pf
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=⇒ m1v1 +m2v2 = m1vf +m2ff

=⇒ vf =
m1v1 +m2v2
m1 +m2

.

Now the initial kinetic energy is

Ki =
1

2
m1v

2
1 +

1

2
m2v

2
2 .

On the other hand, the final kinetic energy is

Kf =
1

2
(m1 +m2)v

2
f =

1

2
(m1 +m2)

(m1v1 +m2v2)
2

(m1 +m2)2

If we then subtract Ki in order to get ∆K, we get (after a bit of algebra)

∆K = − m1m2

2(m1 +m2)
(v1 − v2)

2.

This can only be zero if v1 = v2. However, if v1 = v2, then both objects must
have initially been moving in the same direction at the same speed. This means
they never could have collided with each other in the first place! Therefore, any
time two objects stick together after colliding, the total energy is not conserved.

Practice Problem: In a ballistic pendulum, a bullet of mass m is shot into
a block of mass M and becomes stuck in it. The block is hung so that it can
swing backwards after the bullet hits it. After getting hit with the bullet, the
block rises to a maximum height H. What is the velocity of the bullet in terms
of m, M , H, and g?

Solution: Let’s call the initial velocity of the bullet vb. If the block starts
at rest, the initial momentum of the system comes only from the bullet:

pi = mvb.

After the bullet hits the block, the bullet and the block become stuck together
and move with velocity v. Since this is an inelastic collision problem, the mo-
mentum must still be the same:

pi = pf = (M +m)v.

We can solve this for the initial velocity of the bullet:

mvb = (M +m)v =⇒ vb =
(M +m)v

m
.

This formula still has v in it though. We need a way to find v in terms of H
and g.

A key phrase from the problem statement was “maximum height.” When
the pendulum reaches its maximum height, it must have velocity 0. Therefore,
at this point, all its energy is potential. The only two forces acting are gravity
and the tension of the strings. The tension force is always perpendicular to
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the motion of the object and does not do any work. That means we only need
gravitational kinetic energy. The final energy of the block (with the bullet inside
it) is

Ef = (M +m)gH

Right after the bullet hits the block, the total energy comes only from kinetic
energy (since it starts at height 0). Therefore,

Ei =
1

2
(M +m)v2.

Setting Ei = Ef , we can solve for the velocity of the block right after the bullet
hits it:

1

2
(M +m)v2 = (M +m)gH =⇒ v2 = 2gH =⇒ v =

√
2gH.

Therefore,

vb =
(M +m)v

mb
=

(M +m)
√
2gH

m

15.2 Elastic Collisions

In an elastic collision, both energy and momentum are conserved. We can use
the equations

pi = pf

and
Ei = Ef

to solve elastic collision problems.
Practice Problem: Two balls collide elastically. If ball 1 began at rest

and has mass m, and ball 2 was moving with velocity v = 5 m/s and has mass
2m, what is the final velocity of each ball?

Solution: The initial momentum is

pi = 0 + 2mv = 2mv.

The final momentum is
pf = mv1 + 2mv2,

where v1 and v2 are the final velocities of ball 1 and ball 2 (which are unknown).
The momentum conservation equation pi = pf then gives us

2mv = mv1 + 2mv2.

=⇒ 2v = v1 + 2v2.

Since there are two unknowns v1 and v2, we need another independent equation.
The initial energy is

Ei =
1

2
· 2mv2 + 0 = mv2
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and the final energy is

Ef =
1

2
(mv21 + 2mv22).

The conservation of energy equation Ei = Ef gives us

mv2 =
1

2
(mv21 + 2mv22)

=⇒ 2v2 = v21 + 2v22 .

We now just need to do some algebra. We can solve the momentum equation
for v1 in terms of v and v2:

v1 = 2v − 2v2.

Now we can replace v1 in the energy equation with 2v − 2v2:

2v2 = (2v − 2v2)
2 + 2v22 = 4v2 − 8v2v + 4v22 + 2v22

=⇒ 6v22 − 8v2v + 2v2 = 0

=⇒ 3v22 − 4v2v + v2 = 0

Putting in v = 5 m/s,

3v22 − (20 m/s)v2 + 25 m2/s2 = 0.

This is a quadratic equation for v2. By the quadratic formula:

v2 =
−b±

√
b2 − 4ac

2a
=

(20 m/s)±
√

400 m2/s
2 − 4 · 3 · (25 m2/s2)

2 · 3

=
20 m/s± 10m/s

6
= 5 m/s or 1.67 m/s.

One of the solutions is v2 = 5 m/s. This is just the velocity ball 2 had before
the collision. That means we must choose the other solution, v2 = 1.67 m/s.
Then we can put this back into the momentum equation to find v1:

v1 = 2v − 2v2 = 6.66 m/s.

15.3 Impulse

When no forces act on an object, its momentum remains constant. However,
when there are forces present, the momentum changes. By Newton’s Second
Law, as we discussed in lecture 7.2, the rate of change of momentum is equal to
the sum of all the forces acting on the object:

dp⃗

dt
=
∑
i

F⃗i.
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If we integrate this equation, we get

∆p⃗ =

∫ (∑
i

F⃗i

)
dt.

The integral of the total force on an object is called the impulse. We usually
use the variable J for impulse (because the letter I will be used for something
else later in the course).

J⃗ ≡
∫ (∑

i

F⃗i

)
dt.

Practice Problem: A bug gets hit by a car. If the impulse of the car on
the bug is 0.001 kg·m/s, what is the impulse of the bug on the car?

Solution: By Newton’s Third Law, the force of the bug on the car is the
same magnitude as the force of the car on the bug (but in the opposite direction).
Therefore, when we integrate the force to get the impulse, we will get the same
magnitude but opposite direction: −0.001 kg·m/s.

15.3.1 Constant Force

If the force is constant, then its impulse is

J =

∫
F⃗constdt = F⃗const∆t

Even if the force is not constant, we can get the average force on an object over
a period of time ∆t from the impulse:

F⃗average =
J⃗

∆t
.

Practice Problem: A bike of mass 30 kg moving at 10 m/s crashes into a
brick wall and comes to a complete stop.

• What is the total impulse on the car?

• If the crash takes 0.01 s, what is the average force on the bike?

• If the bike had instead crashed into a pillow and came to a stop in 0.2 s,
what would the average force on the bike be?

Solution: If we define the direction of the bike’s initial motion to be the
positive direction, then the change in momentum is

∆p = pf − pi = 0− 30 kg · 10 m/s = −300 kg ·m/s.

Therefore, the impulse must be

J = −300 kg ·m/s.
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The average force is

F⃗average =
J⃗

∆t
=

−300 kg ·m/s

0.01 s
= −30, 000 kg ·m/s

2
= −30, 000 N.

If the bike instead crashed into a pillow, the average force would be

F⃗average =
J⃗

∆t
=

−300 kg ·m/s

0.2 s
= −1, 500 N.

16 Rotational Kinematics

16.1 Arc Length

θ

sR

Figure 50: The arc length of the green part of the circle is s = θR, where θ is
the angle measured in radians (not degrees).

Arc length can be calculated as shown in Figure 50 using the formula

s = θR.

This formula only holds if theta is measured in radians. As a quick way to check
this formula, note that if θ = 2π radians (360◦), then the we get

s = 2πR,

which is just the circumference of the entire circle as it should be.
Practice Problem: A wheel of radius 2 m is rolling without slipping along

the ground. After it completes one rotation, how far has it traveled?
Solution: After completing one rotation, the wheel has rolled through its

entire circumference of 2πR ≈ 12.57 m. If the wheel rolled without slipping,
then the distance traveled along the ground must be the same.
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16.2 Angular Velocity

θ

sR

Figure 51: A point mass is traveling in a circle of radius R. After a certain
amount of time, it covers a distance s. This distance is related to the angle θ
by s = θR.

Imagine that some object is traveling in a circle of radius R as shown in Figure
51. After a certain amount of time, it will cover some distance s. This distance
is related to the angle θ by s = θR. We can rearrange this formula to get the
“angular distance” that object has traveled:

θ =
s

R
.

We can then define an “angular velocity” by taking the time derivative of both
sides of the equation:

dθ

dt
=

1

R

ds

dt
.

Now ds
dt is the derivative of the distance the object has traveled, which is just

the speed of the object |v⃗|.
dθ

dt
=

|v⃗|
R

.

We will use the variable ω to represent angular velocity:

ω ≡ dθ

dt
=

|v⃗|
R

.

When an extended object rotates, all points in the object rotate at the same
angular velocity, although them may have different velocities (see Figure 52).
Normal velocity is sometimes called linear velocity to distinguish it from an-
gular velocity.

16.2.1 Direction of Angular Velocity

The formula above (ω = |v⃗|/R) gives the magnitude of angular velocity. An-
gular velocity is also defined to have a direction. The direction of ω⃗ tells us
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Figure 52: Practice Problem: A bar with black, red, and blue balls attached
to it rotates as shown in the figure. Because all the objects are attached
together, they must move at the same angular velocity. Rank the speed of the
black, red, and blue points from lowest to highest.

Solution: From the angular velocity formula, |v⃗| = ωR. ω is the same
for each point, but they are each rotating at a different radius R. The black
points are furthest from the center of the circle, so they have the largest R and
therefore the fastest speed. The blue point has the lowest R and the slowest
speed.

which direction the object is rotating (in 2D, the only options are clockwise
and counterclockwise, but in 3D, an object can rotate in various directions). To
find the direction of angular velocity, we use the right hand rule. If you curl
your fingers in the direction of rotation, your thumb will naturally point in the
direction of angular velocity (see Figure 53). Make sure to use your right hand
and not your left.

ω⃗

Figure 53: The right hand rule: curl the fingers of your right hand in the
direction of rotation as shown. Then your thumb points in the direction of ω⃗.
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16.3 Angular Acceleration

We can take the derivative of angular velocity to get angular acceleration.
We will use the variable α⃗ for angular acceleration:

α⃗ =
dω⃗

dt

If we put in the definition of ω into the equation above, we get

|α⃗| = d

dt

|v⃗|
R

.

If we assume the object is moving in a circle, then R must be constant, and so

|α⃗| = 1

R

d|v⃗|
dt

.

Note that α⃗ is a vector. If the object is moving in a circle, the direction
of α⃗ follows a simple rule. When ω is increasing in magnitude, α⃗ will have
the same direction as ω⃗. When ω is decreasing in magnitude, α⃗ will have the
opposite direction.

Figure 54: Practice Problem: A fan begins at rest and then starts to rotate
faster and faster as shown in the Figure? What is the direction of ω⃗ and α⃗?
What if the fan begins slowing down instead?

Solution: By the right-hand rule, ω⃗ points out of the page. When the
fan is speeding up, α⃗ points in the same direction (out of the page). When the
fan is slowing down, ω⃗ still points out of the page, but α⃗ points in the opposite
direction into the page.

Practice Problem: Suppose a fan begins at rest and starts to spin, getting
faster and faster until it reaches its maximum speed and continues spinning at
the same speed. What does the graph of of ω versus time look like? What
about the graph of α versus time?

Solution: See Figure 55.
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Figure 55: Angular velocity and acceleration for a fan begins at rest and starts to
spin, getting faster and faster until it reaches its maximum speed and continues
spinning at the same speed.
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a⃗total

arad

atan

Figure 56: The tangential acceleration atan is the part of the total acceleration
which is tangent to the object’s path. The radial acceleration arad is the part
which is perpendicular to the object’s path.

16.3.1 Tangential Acceleration

We have to be careful because d
dt |v⃗| is not the same as the linear acceleration

a = d
dt v⃗. Instead, d

dt |v⃗| = atan is the tangential acceleration. This is the
component of a⃗ that is parallel to v⃗ (and tangent to the object’s path; see
Figure 56). In terms of atan,

|α⃗| = atan
R

.

Rearranging the equation,

atan = R|α⃗|.

16.3.2 Radial Acceleration

The other component of the linear acceleration is the radial component (the
part of the acceleration that is perpendicular to the object’s circular path; see
Figure 56). If the object is traveling in a circle, then the radial acceleration is
given by the formula we derived earlier for the special case of uniform circular
motion:

arad =
|v⃗|2

R
.

16.4 Constant Angular Acceleration

We have introduced three kinematic variables for rotational motion. Figure 57
summarizes the rotational kinematic variables next to their linear counterparts.
Earlier, when we studied linear motion, we derived the equations that apply for
problems with constant acceleration. By the same process, we can derive very
similar equations when there is constant angular acceleration. These equations
are summarized in Figure 58 next to their linear counterparts. We can use
these equations for problems with constant angular acceleration just like we
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earlier used the linear versions of these equations for problems with constant
acceleration.

Practice Problem: A car, which was initially at rest, is traveling at a
constant acceleration (which means its wheels have a constant angular acceler-
ation). After 2 seconds, it has traveled 20 m. The radius of the wheels is 0.5 m.
What is the angular acceleration of the wheel? Assume the wheels turn without
slipping. Hint: figure out how many radians the wheels have gone through after
2 seconds.

Solution: When the wheels go around one time, the car will have traveled
2πR ≈ 3.14 m. Since the car traveled 20 m, the wheels must have completed
20 m
3.14 m ≈ 3.67 complete revolutions. Each revolution involved 360◦ (which is 2π
radians). Therefore, the wheels have gone through 2π · 3.67 ≈ 40 radians in 2
seconds. Now we can use the kinematic equations. Choose the initial angle of
the wheels to be zero radians. Then θ0 = ω0 = 0 and

θ = θ0 + tω0 +
1

2
t2α

=⇒ 40 rad = 0 + 0 +
1

2
(2 s)2α

=⇒ α = 2 · 1

4 s2
· 40 rad = 20 rad/s

2
.

Rotational Linear

θ x⃗

|ω⃗| = dθ
dt v⃗ = dx⃗

dt

α⃗ = dω⃗
dt a⃗ = dv⃗

dt

Figure 57: The rotational kinematic variables and their linear counterparts.

Rotational Linear

α⃗(t) = constant a⃗(t) = constant

ω⃗(t) = ω⃗0 + tα⃗ v⃗(t) = v⃗0 + t⃗a

θ(t) = θ0 + tω0 +
1
2 t

2α x⃗(t) = x⃗0 + tv⃗0 +
1
2 t

2a⃗

ω2 = ω2
0 + 2α∆θ v2 = v20 + 2a∆x

Figure 58: The kinematic equations for problems with constant rotational/linear
acceleration.
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16.5 Moment of Inertia and Rotational Kinetic Energy

Rotation contributes to an object’s kinetic energy. For linear motion, the kinetic
energy was given by the formula

K =
1

2
mv2.

For an object in rotational motion, we can use the formula v = Rω to get

K =
1

2
mv2 =

1

2
m(Rω)2 =

1

2
mR2ω2.

We define the moment of inertia I of a point mass moving in a circle of radius
R by the equation

I = mR2.

Then the kinetic energy of an object in rotational motion is

K =
1

2
Iω2.

If there are multiple point masses, all connected so they are moving with the
same angular velocity, then

K =
∑
i

1

2
miv

2
i =

∑
i

1

2
mi(Riω)

2 =
1

2

(∑
i

miR
2
i

)
ω2.

Therefore, if there are multiple connected point masses, we define

I =
∑
i

miR
2
i

and the kinetic energy is still

K =
1

2
Iω2.

17 Moment of Inertia

17.1 Definition

During previous classes, we learned
We found that the moment of inertia I (which appears in the rotational kinetic
energy formula) is given by

I =
∑
i

mi|ri|2.

∑
i is a sum over all of the different masses in the system, and |ri| is the distance

to each mass from the axis of rotation.
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Rotational Translational

θ x⃗

ω = dθ
dt v⃗ = dx⃗

dt

α = dω
dt a⃗ = dv⃗

dt

Krot =
1
2Iω

2 Ktr =
1
2mv2

Figure 59: Rotational variables versus translational variables.

17.1.1 Example

Suppose there are two masses M1 = 0.2 kg and M2 = 0.1 kg, rotating around
the center of a disk, as shown in Figure 60. M1 is a distance of 0.85 m from the
center of the disk, and M2 is a distance of 0.64 m from the center of the disk.
If the disk is rotating with an angular speed of 0.6 rad/s, what is the moment
of inertia of the two masses? What is the rotational kinetic energy of the two
masses? (Ignore the moment of inertia and rotational kinetic energy of the disk:
we only want the kinetic energy of the two masses).

T⃗1

F⃗g,M1T⃗2

M1 = 0.2 kg

|r1| = 0.85 m

M2 = 0.1 kg

|r2| = 0.64 m

Figure 60: Two point masses are rotating around the center of a disk.

Solution:
The moment of inertia of the two masses is

I =
∑
i

mi|ri|2 = M1|r1|2 +M2|r2|2 = 0.2 kg · (0.85 m)2 + 0.1 kg · (0.64 m)2

≈ 0.185 kg ·m2.
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The rotational kinetic energy is therefore

Krot =
1

2
Iω2 =

1

2
(0.185 kg ·m2)(0.6 rad/s)2 ≈ 0.033 kg ·m/s2 = 0.033 J.

Remember that radians are dimensionless, which means we can simply ignore
them when combining units.

Note: The moment of inertia depends on the axis of rotation! If I instead
had said that the two masses were rotating around, for example, the center of
M1, then the moment of inertia would be different. Always pay attention to the
location of the axis of rotation.

17.2 Intuition

Based on the formula
I =

∑
i

mi|ri|2,

masses that are further away from the axis of rotation contribute significantly
more to the moment of inertia.

17.2.1 Example

Consider a disk and a ring with the same radius and same total mass, as shown
in Figure 61. Which has a higher moment of inertia (around the axis that goes
straight out of the page through its center)?

Figure 61: A disk and a ring of equal radius and total mass.

Solution:
The ring has a higher moment of inertia because all the mass is concentrated far
away from the axis of rotation. Based on the formula I =

∑
i mi|ri|2, objects

that have mass located far from the axis of rotation (large |ri|) will have larger
moments of inertia.

17.2.2 Example

Consider two rockets of equal mass. One has most of the mass concentrated in
its center, and one has most of the mass concentrated at the top. Which rocket
has a higher moment of inertia for rotation around its center? Which rocket
has a higher moment of inertia for rotation around the top?
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Solution: The rocket with mass concentrated at the top has a higher moment of
inertia for rotation around its center, because most of the mass is concentrated
at the top, far away from the center. However, the rocket with mass concen-
trated at the center has a higher moment of inertia for rotation around the top,
because most of the mass is concentrated far away from the top.

17.3 Calculation

The formula
I =

∑
i

mi|ri|2

works if we have a collection of small point masses. However, it does not work
for objects that are spread out, like a circle, ring, rod, sphere (or anything that
isn’t just a single point). To calculated the moment of inertia of these objects,
we need to replace the sum with an integral:

I =

∫
|r|2dm.

You are not expected to do integrals in this class, so we will just give you
the results of these calculations for various shapes when you need them. The
moments of inertia of several shapes around different axes are listed in your
equation sheet. Remember that the axis of rotation matters! The moments of
inertia will be different depending on the axis!

(a) (b) (c) (d)

Figure 62: Momenta of inertia for various shapes
(a) Solid cylinder or disk, axis of rotation through the axis of the cylinder:
I = (1/2)MR2

(b) Thin ring, axis through the center and perpendicular to the plane of the
ring: I = MR2

(c) Solid sphere, axis through its center: I = (2/5)MR2

(d) Thin rod, axis through center and perpendicular: I = (1/12)ML2

17.4 Parallel Axis Theorem

The Parallel Axis Theorem allow you to calculate the moment of inertia around
one axis based on the moment of inertia around a different, but parallel, axis.
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Parallel Axis Theorem: If the moment of inertia about axis 1 is I1, and
if axis 2 is parallel to axis 1, then the moment of inertia about axis 2 is

I2 = I1 +MD2.

M is the total mass of the system, and D is the distance between axis 1 and
axis 2.

17.4.1 Example

Based on the equation sheet, the moment of inertia of a solid sphere about an
axis through its center is

Icenter =
2

5
MR2

(M is the total mass of the sphere and R is the radius of the sphere). What is
the moment of inertia of a solid sphere about a line tangent to the sphere?

Solution: We can use the parallel axis theorem. Axis 1 is a line through the
center of the sphere. Axis 2 is a line tangent to the sphere. We can choose these
lines so that they are parallel to each other. Then

Itangent = Icenter +MD2.

In this case, the distance between axis 1 and axis 2 is just the radius of the
sphere (D = R), and so

Itangent = Icenter +MD2 =
2

5
MR2 +MR2 =

7

5
MR2.

17.5 Superposition Principle

The Superposition Principle: When a system is composed of multiple ob-
jects, all rotating around the same axis, then the moment of inertia of the whole
system can be found by adding the moments of inertia of all the parts of the
system:

Itotal =
∑
i

Ii.

17.5.1 Example

Consider a bar of length L = 3 m with two solid balls of radius 0.2 m attached
to its ends, as in Figure 63. The balls are attached so that their centers are 3 m
apart. The bar has mass mbar = 2 kg and the balls each have mass mball = 10
kg. What is the moment of inertia of the bar-and-balls system around an axis
that is perpendicular to the bar and passes through the center of the bar?
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Figure 63: A bar with two solid balls attached to its ends. The dashed line is
the axis of rotation.

Solution: We will use the superposition principle:

Itotal = Iball 1 + Ibar + Iball 2.

Based on the equation sheet, the moment of inertia of a bar around the given
axis is

Ibar =
1

12
mbarL

2 =
1

12
(2 kg)(3 m)2 = 1.5 kg ·m2.

Based on the equation sheet, the moment of inertia of a solid ball around its
center is 2

5mballR
2. However, in this case, the axis of rotation is not through the

center of the balls. We need to use the parallel axis theorem to move the axis of
rotation from the center of each all to the center of the bar. The distance from
the center of each ball to the center of the bar is L

2 . Therefore, by the parallel
axis theorem,

Iball =
2

5
mballR

2 +mball

(
L

2

)2

=
2

5
(10 kg)(0.2 m)2 + (10 kg)

(
3 m

2

)2

= 23.5 kg ·m2.

The moment of inertia is the same for both balls in this case: both of their axes
need to be moved by a distance of L

2 . The total moment of inertia is therefore

Itotal = Iball 1+Ibar+Iball 2 = 23.5 kg·m2+1.5 kg·m2+23.5 kg·m2 = 48.5 kg·m2.

17.6 Total Kinetic Energy

When an object is both moving and rotating, its kinetic energy is given by

Ktotal = Ktr,CM +Krot,CM.

Ktr,CM is the translational kinetic energy of the center of mass, defined by
Ktr,CM = 1

2M |vCM|2, where M is the total mass and vCM is the velocity of the
center of mass. Krot,CM is the rotational kinetic energy around the center of
mass, defined by 1

2ICMω2, where ICM is the moment of inertia about the center
of mass.
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17.6.1 Example

A ball of radius 0.05 m and mass 0.2 kg is thrown at a velocity of 40 m/s and
no spin. A second ball (of equal radius and mass) is thrown with a velocity of
40 m/s and spins at a rate of 200 radians per second. How much more kinetic
energy does the second ball have?

Solution: The translational kinetic energies of the first and the second ball
are the same: Ktr,CM = 1

2M |vCM|2 = 1
2 (0.2 kg)(40 m/s)2. The only difference

is the rotational kinetic energy. The first ball has no rotational kinetic energy:

Krot,CM,ball 1 =
1

2
ICMω2 =

1

2
ICM · 0 = 0.

The rotational kinetic energy of the second ball is

Krot,CM,ball 1 =
1

2
ICMω2 =

1

2

(
2

5
mballR

2

)
ω2 =

1

2

(
2

5
(0.2 kg)(0.05 m)2

)
(200 rad/s)2

= 2 kg ·m2/s2 = 2 J.

Therefore, the second ball has 2 J more kinetic energy than the first.

18 Torque

18.1 The Cross Product

The cross product of two vectors A⃗ and B⃗ is written as A⃗× B⃗. This is not the
same as the dot product A⃗ · B⃗. The cross product gives a vector, not just a
number. The magnitude of the cross-product is given by

|A⃗× B⃗| = |A⃗||B⃗| sin θ,

where θ is the angle between A⃗ and B⃗. For this formula, you should always
choose the smaller angle between A⃗ and B⃗ (see Figure 64 for an example).
Otherwise, you will end up with a negative sign. The direction of the cross
product is given by the right-hand rule:

Right-hand rule (for cross product): Point your right thumb along A⃗ and

your other fingers along B⃗. Then your palm points in the direction of A⃗ × B⃗.
The order is important here. If you use the wrong order, you will get the oppo-
site direction!
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|A⃗| = 2.16 m

|B⃗| = 2.01 m
333◦

Figure 64: The cross product A⃗ × B⃗ has magnitude |A⃗||B⃗| sin(360◦ − 333◦) =
2.16 · 2.01 sin(27◦) m2 ≈ 1.97 m2. By the right-hand rule, its direction is into

the page (the only way to get your thumb to point along A⃗ and your fingers to

point along B⃗ is to point your palm toward the page).

Cross product Dot product

A⃗× B⃗ is a vector A⃗ · B⃗ is a number

|A⃗× B⃗| = |A⃗||B⃗| sin θ A⃗ · B⃗ = |A⃗||B⃗| cos θ

Direction of A⃗× B⃗ given by right-hand rule A⃗ · B⃗ has no direction

Figure 65: The dot product versus the cross product.

18.1.1 Special Cases

• If A⃗ and B⃗ are parallel (θ = 0) or anti-parallel (θ = 180◦), then the cross
product is zero (sin 0 = sin 180◦ = 0).

• If A⃗ and B⃗ are perpendicular (θ = 90◦), then the cross product has its

maximum magnitude of |A⃗||B⃗| (because sin 90◦ = 1).

• The order of the cross product matters. When you switch A⃗ and B⃗, the
cross product will be in the opposite direction:

A⃗× B⃗ = −B⃗ × A⃗.

18.1.2 3D Vector Notation

We will use the symbol ⊙ to represent a vector coming out of the page, and the
symbol ⊗ to represent a vector going into the page.
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A⃗ B⃗ A⃗× B⃗

⊙

⊙

⊗

⊗
⊙ ⊗ This is zero (because

the angle between A⃗
and B⃗ is 180◦)

Figure 66: The direction of the cross product of various pairs of vectors.

18.2 Torque Definition

During previous classes, we’ve made a side-by-side comparison of rotational and
translational variables

Rotational Translational

θ x⃗

ω = dθ
dt v⃗ = dx⃗

dt

α = dω
dt a⃗ = dv⃗

dt

Krot =
1
2Iω

2 Ktr =
1
2mv2

Figure 67: Rotational variables versus translational variables.

In this class, we will add one more row to this table for Newton’s second law.
For translational variables, Newton’s second law is

∑
i F⃗i = ma⃗. In rotational

variables, Newton’s second law becomes:∑
i

τ⃗i = Iα⃗.

The mass m has been replaced by the moment of inertia I, the acceleration a
has been replaced with the angular acceleration α, and the sum of forces

∑
i F⃗i
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has been replaced with a sum of torques
∑

i τi. Torque is defined by

τi = r⃗i × F⃗i.

In this formula, F⃗i is the force that is causing the torque, and r⃗i is the vector
that points from the axis of rotation to the location where the force is being
applied. The vector r⃗i is called the lever arm.

◦

F⃗

r⃗

Figure 68: The axis of rotation is marked with ◦. The force F⃗ is applied at the
location shown in the figure. The lever arm r⃗ points from the axis of rotation
to the point where the force is applied. The torque is r⃗ × F⃗ and points out of
the page.

◦

F⃗1

r⃗1

F⃗2

r⃗2

Figure 69: F⃗1 produces a torque pointing out of the page, while F⃗2 produces a
torque pointing into the page.

Rotational Translational

θ x⃗

ω = dθ
dt v⃗ = dx⃗

dt

α = dω
dt a⃗ = dv⃗

dt

Krot =
1
2Iω

2 Ktr =
1
2mv2∑

i τ⃗i = Iα⃗
∑

i F⃗i = ma⃗

Figure 70: Rotational variables versus translational variables, including New-
ton’s second law.
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18.3 Working with Torque

If we use the symbol n̂i to represent the direction of each torque, then we can
write the torque formula as

τtotal =
∑
i

r⃗i × F⃗i =
∑
i

|r⃗i||F⃗i| sin θi · n̂i.

Based on this formula,

• forces that are applied further away from the axis of rotation will create
more torque (for a given |F⃗ | and θ),

• forces that are perpendicular (θ = 90◦) to the lever arm will create more

torque (for a given |F⃗ | and |r⃗|), and

• forces that are parallel (θ = 0◦) or anti-parallel (θ = 180◦)t o the lever
arm will not cause any torque.

◦

F⃗1 F⃗2 F⃗3

Figure 71: For a plank rotating around its center as shown, all three of the
applied forces produce a torque pointing out of the page, which means the
angular acceleration will point into the page. F⃗1 produces the torque with the
largest magnitude, since it is farthest from the axis of rotation, and F⃗3 produces
the torque with the smallest magnitude, since it is closest to the axis of rotation.

◦F⃗1

F⃗2

F⃗3

r⃗

Figure 72: Three forces of equal magnitude are applied to a plank rotating
around its center as shown. Even though each forces has the same magnitude
and is applied at the same point, they will all produce a different torque because
they all make different angles with the lever arm r⃗. F⃗1 will produce no torque
because it is anti-parallel to r⃗. F⃗2 will produce the most torque, since it is
perpendicular to r⃗.
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